메뉴 건너뛰기




Volumn 22, Issue 3-4, 2013, Pages 551-558

Symmetric extreme learning machine

Author keywords

Black box model; Chaotic time series; Extreme learning machine; Generalization performance; Symmetry

Indexed keywords

CRYSTAL SYMMETRY; MACHINE LEARNING; NETWORK ARCHITECTURE;

EID: 84874021004     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-012-0859-8     Document Type: Article
Times cited : (11)

References (18)
  • 1
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70: 489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 5
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20: 273-297.
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 6
    • 77952583382 scopus 로고    scopus 로고
    • Human action recognition using extreme learning machine based on visual vocabularies
    • Minhas R, Baradarani A, Seifzadeh S, Wu QMJ (2010) Human action recognition using extreme learning machine based on visual vocabularies. Neurocomputing 73: 1906-1917.
    • (2010) Neurocomputing , vol.73 , pp. 1906-1917
    • Minhas, R.1    Baradarani, A.2    Seifzadeh, S.3    Wu, Q.M.J.4
  • 7
    • 34547992213 scopus 로고    scopus 로고
    • Multi-category classification using an extreme learning machine for microarray gene expression cancer diagnosis
    • Zhang R, Huang GB, Sundararajan N, Saratchandran P (2007) Multi-category classification using an extreme learning machine for microarray gene expression cancer diagnosis. IEEE/ACM Trans Comput Biol Bioinf 4: 485-495.
    • (2007) IEEE/ACM Trans Comput Biol Bioinf , vol.4 , pp. 485-495
    • Zhang, R.1    Huang, G.B.2    Sundararajan, N.3    Saratchandran, P.4
  • 9
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang GB, Chen L, Siew CK (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17: 879-892.
    • (2006) IEEE Trans Neural Netw , vol.17 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 10
    • 42749105486 scopus 로고    scopus 로고
    • Constraining the topology of neural networks to ensure dynamics with symmetry properties
    • Aguirre L, Lopes R, Amaral G, Letellier C (2004) Constraining the topology of neural networks to ensure dynamics with symmetry properties. Phys Rev E 69: 1-11.
    • (2004) Phys Rev E , vol.69 , pp. 1-11
    • Aguirre, L.1    Lopes, R.2    Amaral, G.3    Letellier, C.4
  • 11
    • 44349097636 scopus 로고    scopus 로고
    • Symmetric RBF classifier for nonlinear detection in multiple-antenna-aided systems
    • Chen S, Wolfgang A, Harris C, Hanzo L (2008) Symmetric RBF classifier for nonlinear detection in multiple-antenna-aided systems. IEEE Trans Neural Netw 19: 737-745.
    • (2008) IEEE Trans Neural Netw , vol.19 , pp. 737-745
    • Chen, S.1    Wolfgang, A.2    Harris, C.3    Hanzo, L.4
  • 12
    • 79954420689 scopus 로고    scopus 로고
    • Grey-box radial basis function modelling
    • Chen S, Hong X, Harris C (2011) Grey-box radial basis function modelling. Neurocomputing 74: 1564-1571.
    • (2011) Neurocomputing , vol.74 , pp. 1564-1571
    • Chen, S.1    Hong, X.2    Harris, C.3
  • 14
    • 0033177289 scopus 로고    scopus 로고
    • Winning entry of the K. U. Leuven time series prediction competition
    • McNames J, Suykens JAK, Vandewalle J (1999) Winning entry of the K. U. Leuven time series prediction competition. Int J Bifurcat Chaos 9: 1485-1500.
    • (1999) Int J Bifurcat Chaos , vol.9 , pp. 1485-1500
    • McNames, J.1    Suykens, J.A.K.2    Vandewalle, J.3
  • 15
    • 0031673055 scopus 로고    scopus 로고
    • Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
    • Huang GB, Babri H (1998) Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans Neural Netw 9: 224-229.
    • (1998) IEEE Trans Neural Netw , vol.9 , pp. 224-229
    • Huang, G.B.1    Babri, H.2
  • 16
    • 84874017700 scopus 로고    scopus 로고
    • http://www3. ntu. edu. sg/home/egbhuang/.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.