메뉴 건너뛰기




Volumn 22, Issue 3-4, 2013, Pages 427-433

3D object recognition based on a geometrical topology model and extreme learning machine

Author keywords

Dipole topology; Extreme learning machines; Geometrical topology hypothesis; Optimal cognition principle

Indexed keywords

FEEDFORWARD NEURAL NETWORKS; GEOMETRY; KNOWLEDGE ACQUISITION; MACHINE LEARNING; MULTILAYER NEURAL NETWORKS; NETWORK LAYERS; OBJECT RECOGNITION; THREE DIMENSIONAL COMPUTER GRAPHICS;

EID: 84874017920     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-012-0892-7     Document Type: Article
Times cited : (28)

References (29)
  • 2
    • 0033871465 scopus 로고    scopus 로고
    • Probabilistic 3D object recognition
    • Shimshoni I, Ponce J (2000) Probabilistic 3D object recognition. Int J Comput Vis 36(1): 51-70.
    • (2000) Int J Comput Vis , vol.36 , Issue.1 , pp. 51-70
    • Shimshoni, I.1    Ponce, J.2
  • 4
    • 0034313836 scopus 로고    scopus 로고
    • Probabilistic models of appearance for 3-D object recognition
    • Pope AR, Lowe DG (2000) Probabilistic models of appearance for 3-D object recognition. Int J Comput Vis 40(2): 149-167.
    • (2000) Int J Comput Vis , vol.40 , Issue.2 , pp. 149-167
    • Pope, A.R.1    Lowe, D.G.2
  • 5
    • 1842506156 scopus 로고    scopus 로고
    • A similarity-based aspect-graph approach to 3D object recognition
    • Cyr CM, Kimia BB (2004) A similarity-based aspect-graph approach to 3D object recognition. Int J Comput Vis 57(1): 5-22.
    • (2004) Int J Comput Vis , vol.57 , Issue.1 , pp. 5-22
    • Cyr, C.M.1    Kimia, B.B.2
  • 11
    • 33846006213 scopus 로고    scopus 로고
    • Probabilistic 3D object recognition from 2D invariant view sequence based on similarity
    • Nian R, Ji G-R, Zhao W-C, Feng C (2007) Probabilistic 3D object recognition from 2D invariant view sequence based on similarity. Neurocomputing 70(4-6): 785-793.
    • (2007) Neurocomputing , vol.70 , Issue.4-6 , pp. 785-793
    • Nian, R.1    Ji, G.-R.2    Zhao, W.-C.3    Feng, C.4
  • 13
    • 0242474188 scopus 로고    scopus 로고
    • Bayesian Ying Yang harmony learning
    • M. A. Arbib (Ed.), Cambridge: The MIT Press
    • Xu L (2002) Bayesian Ying Yang harmony learning. In: Arbib MA (ed) The handbook of brain theory and neural networks. The MIT Press, Cambridge.
    • (2002) The Handbook of Brain Theory and Neural Networks
    • Xu, L.1
  • 16
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70: 489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 17
    • 78649492473 scopus 로고    scopus 로고
    • Optimization method based extreme learning machine for classification
    • Huang G-B, Ding X, Zhou H (2010) Optimization method based extreme learning machine for classification. Neurocomputing 74: 155-163.
    • (2010) Neurocomputing , vol.74 , pp. 155-163
    • Huang, G.-B.1    Ding, X.2    Zhou, H.3
  • 20
    • 0037361264 scopus 로고    scopus 로고
    • Learning capability and storage capacity of two hidden-layer feedforward networks
    • Huang G-B (2003) Learning capability and storage capacity of two hidden-layer feedforward networks. IEEE Trans Neural Netw 14(2): 274-281.
    • (2003) IEEE Trans Neural Netw , vol.14 , Issue.2 , pp. 274-281
    • Huang, G.-B.1
  • 21
    • 33847199121 scopus 로고    scopus 로고
    • Learning high-dimensional data
    • S. Ablameyko (Ed.), Amsterdam: IOS Press
    • Verleysen M (2003) Learning high-dimensional data. In: Ablameyko S et al (eds) Limitations and future trends in neural computation. IOS Press, Amsterdam, pp 141-162.
    • (2003) Limitations and Future Trends in Neural Computation , pp. 141-162
    • Verleysen, M.1
  • 22
    • 0036042449 scopus 로고    scopus 로고
    • Analysis and theory of high-dimension spatial geometry for artificial neural networks
    • Wang S-J, Wang B-N (2002) Analysis and theory of high-dimension spatial geometry for artificial neural networks. Acta Electron Sinica 30(1): 1-4.
    • (2002) Acta Electron Sinica , vol.30 , Issue.1 , pp. 1-4
    • Wang, S.-J.1    Wang, B.-N.2
  • 23
    • 33847360579 scopus 로고    scopus 로고
    • Visualizing distortions and recovering topology in continuous projection techniques
    • Aupetit M (2007) Visualizing distortions and recovering topology in continuous projection techniques. Neurocomputing 70(7-9): 1304-1330.
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1304-1330
    • Aupetit, M.1
  • 26
    • 0017134710 scopus 로고
    • The singularities of the visual mapping
    • Koenderink JJ, van Doorn AJ (1976) The singularities of the visual mapping. Biol Cyber 24: 51-59.
    • (1976) Biol Cyber , vol.24 , pp. 51-59
    • Koenderink, J.J.1    van Doorn, A.J.2
  • 27
    • 0030128170 scopus 로고    scopus 로고
    • Distance metric between 3D models and 2D images for recognition and classification
    • Basri R, Weinshall D (1996) Distance metric between 3D models and 2D images for recognition and classification. IEEE Trans Pattern Anal Mach Intell 18(4): 465-470.
    • (1996) IEEE Trans Pattern Anal Mach Intell , vol.18 , Issue.4 , pp. 465-470
    • Basri, R.1    Weinshall, D.2
  • 28
    • 0029568042 scopus 로고
    • Classifier and shift-invariant automatic target recognition neural networks
    • Casasent DP, Neiberg LM (1995) Classifier and shift-invariant automatic target recognition neural networks. Neural Netw 8(7-8): 1117-1129.
    • (1995) Neural Netw , vol.8 , Issue.7-8 , pp. 1117-1129
    • Casasent, D.P.1    Neiberg, L.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.