메뉴 건너뛰기




Volumn 20, Issue 1, 2013, Pages 1-26

Latent Class Analysis With Distal Outcomes: A Flexible Model-Based Approach

Author keywords

distal outcome; finite mixture model; latent class analysis; pseudoclass draws

Indexed keywords

BIASED ESTIMATES; DISTAL OUTCOME; FINITE MIXTURE MODELS; LATENT CLASS; LATENT CLASS ANALYSIS; MODEL BASED APPROACH; MONTE- CARLO SIMULATIONS; PSEUDOCLASS DRAWS;

EID: 84873351058     PISSN: 10705511     EISSN: None     Source Type: Journal    
DOI: 10.1080/10705511.2013.742377     Document Type: Article
Times cited : (532)

References (45)
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19: 716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 5
    • 34250108028 scopus 로고
    • Model selection and Akaike Information Criterion (AIC): The general theory and its analytical extension
    • Bozdogan, H. 1987. Model selection and Akaike Information Criterion (AIC): The general theory and its analytical extension. Psychometrika, 52: 345-370.
    • (1987) Psychometrika , vol.52 , pp. 345-370
    • Bozdogan, H.1
  • 8
    • 0002483675 scopus 로고
    • Latent class models: Recent developments and prospects for the future
    • In: Arminger G., Clogg C. C., Sobel M. E., editors New York, NY, New York, NY,: Plenum
    • Clogg, C. C. 1995. "Latent class models: Recent developments and prospects for the future.". In Handbook of statistical modeling for the social and behavioral sciences Edited by: Arminger, G., Clogg, C. C. and Sobel, M. E. 311-359. New York, NY: Plenum.
    • (1995) Handbook of statistical modeling for the social and behavioral sciences , pp. 311-359
    • Clogg, C.C.1
  • 9
  • 11
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins, L. M., Schafer, J. L. and Kam, C.-M. 2001. A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6: 330-351.
    • (2001) Psychological Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.-M.3
  • 18
    • 21144453402 scopus 로고    scopus 로고
    • Finite mixture dynamic regression modeling of panel data with implications for response analysis
    • Kaplan, D. 2005. Finite mixture dynamic regression modeling of panel data with implications for response analysis. Journal of Educational and Behavioral Statistics, 30: 169-187.
    • (2005) Journal of Educational and Behavioral Statistics , vol.30 , pp. 169-187
    • Kaplan, D.1
  • 20
    • 17444404172 scopus 로고    scopus 로고
    • Using data augmentation to obtain standard errors and conduct hypothesis tests in latent class and latent transition analysis
    • Lanza, S. T., Collins, L. M., Schafer, J. L. and Flaherty, B. P. 2005. Using data augmentation to obtain standard errors and conduct hypothesis tests in latent class and latent transition analysis. Psychological Methods, 10: 84-100.
    • (2005) Psychological Methods , vol.10 , pp. 84-100
    • Lanza, S.T.1    Collins, L.M.2    Schafer, J.L.3    Flaherty, B.P.4
  • 21
    • 84862796317 scopus 로고    scopus 로고
    • University Park, PA, University Park, PA,: The Methodology Center, Penn State, (Version 1.2.6), Retrieved from
    • Lanza, S. T., Dziak, J. J., Huang, L., Xu, S. and Collins, L. M. 2011. Proc LCA & Proc LTA users' guide University Park, PA: The Methodology Center, Penn State. (Version 1.2.6), Retrieved fromhttp://methodology.psu.edu
    • (2011) Proc LCA & Proc LTA users' guide
    • Lanza, S.T.1    Dziak, J.J.2    Huang, L.3    Xu, S.4    Collins, L.M.5
  • 23
    • 77952810495 scopus 로고    scopus 로고
    • Latent transition analysis: Benefits of a latent variable approach to modeling transitions in substance use
    • Lanza, S. T., Patrick, M. E. and Maggs, J. L. 2010. Latent transition analysis: Benefits of a latent variable approach to modeling transitions in substance use. Journal of Drug Issues, 40: 93-120.
    • (2010) Journal of Drug Issues , vol.40 , pp. 93-120
    • Lanza, S.T.1    Patrick, M.E.2    Maggs, J.L.3
  • 24
    • 84875586601 scopus 로고    scopus 로고
    • Latent class analysis: An alternative perspective on subgroup analysis in prevention and treatment
    • doi: 10.1007/s11121-011-0201-1
    • Lanza, S. T. and Rhoades, B. L. 2011a. Latent class analysis: An alternative perspective on subgroup analysis in prevention and treatment. Prevention Science, doi: 10.1007/s11121-011-0201-1
    • (2011) Prevention Science
    • Lanza, S.T.1    Rhoades, B.L.2
  • 25
    • 84873360770 scopus 로고    scopus 로고
    • (Version 1.0), University Park, PA, University Park, PA,: The Methodology Center, Penn State, Retrieved from
    • Lanza, S. T. and Rhoades, B. L. 2011b. LCA outcome probability calculator (Version 1.0) University Park, PA: The Methodology Center, Penn State. Retrieved fromhttp://methodology.psu.edu/ra/lcalta/calculator
    • (2011) LCA outcome probability calculator
    • Lanza, S.T.1    Rhoades, B.L.2
  • 26
    • 79961221925 scopus 로고    scopus 로고
    • poLCA: An R package for polytomous variable latent class analysis
    • Linzer, D. A. and Lewis, J. B. 2011. poLCA: An R package for polytomous variable latent class analysis. Journal of Statistical Software, 42: 1-29.
    • (2011) Journal of Statistical Software , vol.42 , pp. 1-29
    • Linzer, D.A.1    Lewis, J.B.2
  • 27
    • 33846951724 scopus 로고    scopus 로고
    • Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters
    • Lubke, G. and Muthén, B. 2007. Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters. Structural Equation Modeling, 14: 26-47.
    • (2007) Structural Equation Modeling , vol.14 , pp. 26-47
    • Lubke, G.1    Muthén, B.2
  • 28
    • 0023570352 scopus 로고
    • On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture
    • McLachlan, G. J. 1987. On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture. Journal of the Royal Statistical Society, Series C (Applied Statistics), 36: 318-324.
    • (1987) Journal of the Royal Statistical Society, Series C (Applied Statistics) , vol.36 , pp. 318-324
    • McLachlan, G.J.1
  • 30
    • 0032969449 scopus 로고    scopus 로고
    • Finite mixture modeling with mixture outcomes using the EM Algorithm
    • Muthén, B. O. and Sheddon, K. 1999. Finite mixture modeling with mixture outcomes using the EM Algorithm. Biometrics, 55: 463-469.
    • (1999) Biometrics , vol.55 , pp. 463-469
    • Muthén, B.O.1    Sheddon, K.2
  • 31
    • 0003753978 scopus 로고    scopus 로고
    • 5th ed., Los Angeles, CA, Los Angeles, CA,: Muthén & Muthén
    • Muthén, L. K. and Muthén, B. O. 1998-2007. Mplus user's guide, 5th ed. Los Angeles, CA: Muthén & Muthén.
    • (1998) Mplus user's guide
    • Muthén, L.K.1    Muthén, B.O.2
  • 33
    • 35748946921 scopus 로고    scopus 로고
    • Subtypes, severity, and structural stability of peer victimization: What does latent class analysis say?
    • Nylund, K., Bellmore, A., Nishina, A. and Graham, S. 2007. Subtypes, severity, and structural stability of peer victimization: What does latent class analysis say?. Child Development, 78: 1706-1722.
    • (2007) Child Development , vol.78 , pp. 1706-1722
    • Nylund, K.1    Bellmore, A.2    Nishina, A.3    Graham, S.4
  • 34
    • 77957244188 scopus 로고    scopus 로고
    • General growth mixture analysis with antecedents and consequences of change
    • In: Piquero A. R., Weisburd D., editors New York, NY, New York, NY,: Springer
    • Petras, H. and Masyn, K. 2010. "General growth mixture analysis with antecedents and consequences of change.". In Handbook of quantitative criminology Edited by: Piquero, A. R. and Weisburd, D. 69-100. New York, NY: Springer.
    • (2010) Handbook of quantitative criminology , pp. 69-100
    • Petras, H.1    Masyn, K.2
  • 35
    • 78650879811 scopus 로고    scopus 로고
    • Using latent transition analysis in nursing research to explore change over time
    • Roberts, T. J. and Ward, S. E. 2011. Using latent transition analysis in nursing research to explore change over time. Nursing Research, 60: 73-79.
    • (2011) Nursing Research , vol.60 , pp. 73-79
    • Roberts, T.J.1    Ward, S.E.2
  • 38
    • 28044456588 scopus 로고    scopus 로고
    • SAS Institute, Cary, NC, Cary, NC,: Author
    • SAS Institute. 2002-2004. SAS 9.1.3 help and documentation Cary, NC: Author.
    • (2002) SAS 9.1.3 help and documentation
  • 40
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwartz, G. 1978. Estimating the dimension of a model. The Annals of Statistics, 6: 461-464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwartz, G.1
  • 41
    • 0000386489 scopus 로고
    • Application of model-selection criteria to some problems in multivariate analysis
    • Sclove, S. L. 1987. Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52: 333-343.
    • (1987) Psychometrika , vol.52 , pp. 333-343
    • Sclove, S.L.1
  • 44
    • 24644462335 scopus 로고    scopus 로고
    • Residual diagnostics for growth mixture models: Examining the impact of a preventive intervention on multiple trajectories of aggressive behavior
    • Wang, C., Brown, C. H. and Bandeen-Roche, K. 2005. Residual diagnostics for growth mixture models: Examining the impact of a preventive intervention on multiple trajectories of aggressive behavior. Journal of the American Statistical Association, 100: 1054-1076.
    • (2005) Journal of the American Statistical Association , vol.100 , pp. 1054-1076
    • Wang, C.1    Brown, C.H.2    Bandeen-Roche, K.3
  • 45
    • 84873378362 scopus 로고    scopus 로고
    • (Version 2.0), University Park, University Park,: The Methodology Center, Penn State, Retrieved from
    • Yang, J., Tan, X., Lanza, S. T. and Wagner, A. T. 2012. LC_distal SAS macro user's guide (Version 2.0) University Park: The Methodology Center, Penn State. Retrieved fromhttp://methodology.psu.edu/
    • (2012) LC_distal SAS macro user's guide
    • Yang, J.1    Tan, X.2    Lanza, S.T.3    Wagner, A.T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.