메뉴 건너뛰기




Volumn 42, Issue 10, 2011, Pages 1-29

poLCA: An R package for polytomous variable latent class analysis

Author keywords

Categorical; Concomitant; Latent class analysis; Latent class regression; Polytomous

Indexed keywords


EID: 79961221925     PISSN: None     EISSN: 15487660     Source Type: Journal    
DOI: 10.18637/jss.v042.i10     Document Type: Article
Times cited : (931)

References (38)
  • 2
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • B Petrov, F Csake (eds, Akademiai Kiado, Budapest, Hungary
    • Akaike H (1973). Information Theory and an Extension of the Maximum Likelihood Principle." In B Petrov, F Csake (eds.), Second International Symposium on Information Theory, pp. 267-281. Akademiai Kiado, Budapest, Hungary.
    • (1973) Second International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 5
    • 65749279825 scopus 로고    scopus 로고
    • The political economy ofwomen's support for fundamentalist islam
    • Blaydes L, Linzer DA (2008). The Political Economy ofWomen's Support for Fundamentalist Islam." World Politics, 60(4), 576-609.
    • (2008) World Politics , vol.60 , Issue.4 , pp. 576-609
    • Blaydes, L.1    Linzer, D.A.2
  • 6
    • 13844253503 scopus 로고    scopus 로고
    • Estimating latent structure models with categorical variables: One-step versus three-step estimators
    • Bolck A, Croon M, Hagenaars J (2004). Estimating Latent Structure Models with Categorical Variables: One-Step Versus Three-Step Estimators. Political Analysis, 12(1), 3-27.
    • (2004) Political Analysis , vol.12 , Issue.1 , pp. 3-27
    • Bolck, A.1    Croon, M.2    Hagenaars, J.3
  • 7
    • 85015562841 scopus 로고    scopus 로고
    • Why is support for extreme parties underestimated by surveys? A Latent class analysis
    • Breen R (2000).Why Is Support for Extreme Parties Underestimated by Surveys? A Latent Class Analysis. British Journal of Political Science, 30(2), 375-382.
    • (2000) British Journal of Political Science , vol.30 , Issue.2 , pp. 375-382
    • Breen, R.1
  • 9
    • 0004827260 scopus 로고
    • On scaling models applied to data from several groups
    • Clogg CC, Goodman LA (1986). On Scaling Models Applied to Data from Several Groups. Psychometrika, 51(1), 123-135.
    • (1986) Psychometrika , vol.51 , Issue.1 , pp. 123-135
    • Clogg, C.C.1    Goodman, L.A.2
  • 14
    • 79961219494 scopus 로고    scopus 로고
    • R package version 0.33. C code in emgllmfitter by Andreas Borg, URL
    • Duffy D (2010). gllm: Generalised log-linear model. R package version 0.33. C code in emgllmfitter by Andreas Borg, URL http://CRAN.R-project.org/package=gllm.
    • (2010) Gllm: Generalised Log-linear Model
    • Duffy, D.1
  • 17
    • 84929066046 scopus 로고
    • Latent class analysis of survey questions that include don't know responses
    • Feick LF (1989). Latent Class Analysis of Survey Questions that Include Don't Know Responses." Public Opinion Quarterly, 53(4), 525-547.
    • (1989) Public Opinion Quarterly , vol.53 , Issue.4 , pp. 525-547
    • Feick, L.F.1
  • 18
    • 0000177088 scopus 로고    scopus 로고
    • Key concepts in model selection: Performance and generalizability
    • Forster MR (2000). Key Concepts in Model Selection: Performance and Generalizability. Journal of Mathematical Psychology, 44, 205-231.
    • (2000) Journal of Mathematical Psychology , vol.44 , pp. 205-231
    • Forster, M.R.1
  • 19
    • 84950652276 scopus 로고
    • The multivariate analysis of qualitative data: Interactions among multiple classifications
    • Goodman L (1970). The Multivariate Analysis of Qualitative Data: Interactions among Multiple Classifications." Journal of the American Statistical Association, 65, 226-256.
    • (1970) Journal of the American Statistical Association , vol.65 , pp. 226-256
    • Goodman, L.1
  • 20
    • 85041975304 scopus 로고
    • Exploratory latent structure analysis using both identiffable and unidentifiable models
    • 315-231
    • Goodman L (1974). Exploratory Latent Structure Analysis using both Identiffable and Unidentifiable Models." Biometrika, 61, 315-231.
    • (1974) Biometrika , vol.61
    • Goodman, L.1
  • 21
    • 54949126376 scopus 로고    scopus 로고
    • Flexmix version 2: Finite mixtures with concomitant variables and varying and constant parameters
    • URL
    • Grün B, Leisch F (2008). FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters." Journal of Statistical Software, 28(4), 1-35. URL http://www.jstatsoft.org/v28/i04/.
    • (2008) Journal of Statistical Software , vol.28 , Issue.4 , pp. 1-35
    • Grün, B.1    Leisch, F.2
  • 24
    • 4444261429 scopus 로고    scopus 로고
    • Classification by opinion-changing behavior: A mixture model approach
    • Hill JL, Kriesi H (2001a). Classification by Opinion-Changing Behavior: A Mixture Model Approach." Political Analysis, 9(4), 301-324.
    • (2001) Political Analysis , vol.9 , Issue.4 , pp. 301-324
    • Hill, J.L.1    Kriesi, H.2
  • 25
    • 0035533813 scopus 로고    scopus 로고
    • An extension and test of converse's 'black-and-white' model of response stability
    • Hill JL, Kriesi H (2001b). An Extension and Test of Converse's 'Black-and-White' Model of Response Stability." American Political Science Review, 95(2), 397-413.
    • (2001) American Political Science Review , vol.95 , Issue.2 , pp. 397-413
    • Hill, J.L.1    Kriesi, H.2
  • 26
    • 0001453756 scopus 로고
    • The logical and mathematical foundations of latent structure analysis
    • In SA Stouffer (ed, John Wiley & Sons, New York
    • Lazarsfeld PF (1950). The Logical and Mathematical Foundations of Latent Structure Analysis." In SA Stouffer (ed.), Measurement and Prediction, pp. 362-412. John Wiley & Sons, New York.
    • (1950) Measurement and Prediction , pp. 362-412
    • Lazarsfeld, P.F.1
  • 27
    • 11244333649 scopus 로고    scopus 로고
    • Flexmix: A general framework for finite mixture models and latent class regression in r
    • URL
    • Leisch F (2004). FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R." Journal of Statistical Software, 11(8), 1-18. URL http://www.jstatsoft.org/v11/i08/.
    • (2004) Journal of Statistical Software , vol.11 , Issue.8 , pp. 1-18
    • Leisch, F.1
  • 28
    • 0642281964 scopus 로고    scopus 로고
    • Model selection information criteria for non-nested latent class models
    • Lin TH, Dayton CM (1997). Model Selection Information Criteria for Non-Nested Latent Class Models." Journal of Educational and Behavioral Statistics, 22(3), 249-264.
    • (1997) Journal of Educational and Behavioral Statistics , vol.22 , Issue.3 , pp. 249-264
    • Lin, T.H.1    Dayton, C.M.2
  • 29
    • 79959702266 scopus 로고    scopus 로고
    • Reliable inference in highly stratified contingency tables: Using latent class models as density estimators
    • Linzer DA (2011). Reliable Inference in Highly Stratified Contingency Tables: Using Latent Class Models as Density Estimators." Political Analysis, 19(2).
    • (2011) Political Analysis , vol.19 , Issue.2
    • Linzer, D.A.1
  • 31
    • 0042504831 scopus 로고
    • A latent class analysis of tolerance for nonconformity in the american public
    • McCutcheon AL (1985). A Latent Class Analysis of Tolerance for Nonconformity in the American Public." The Public Opinion Quarterly, 49(5), 474-488.
    • (1985) The Public Opinion Quarterly , vol.49 , Issue.5 , pp. 474-488
    • McCutcheon, A.L.1
  • 35
    • 0001232538 scopus 로고
    • A fast improvement to the em algorithm on its own terms
    • Meilijson I (1989). A Fast Improvement to the EM Algorithm on its Own Terms." Journal of the Royal Statistical Society B, 51(1), 127-138.
    • (1989) Journal of the Royal Statistical Society B , vol.51 , Issue.1 , pp. 127-138
    • Meilijson, I.1
  • 36
    • 79951480123 scopus 로고    scopus 로고
    • R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
    • R Development Core Team (2010). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
    • (2010) R: A Language and Environment For Statistical Computing
  • 37
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwartz G (1978). Estimating the Dimension of a Model." The Annals of Statistics, 6, 461-464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwartz, G.1
  • 38
    • 79961240014 scopus 로고    scopus 로고
    • The National Election Studies, University of Michigan, Center for Political Studies, producer and distributor, Ann Arbor, MI. URL
    • The National Election Studies (2000). The 2000 National Election Study dataset. University of Michigan, Center for Political Studies, producer and distributor, Ann Arbor, MI. URL http://www.electionstudies.org/.
    • (2000) The 2000 National Election Study Dataset


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.