메뉴 건너뛰기




Volumn 4, Issue 4, 2013, Pages 391-400

A boundary restricted adaptive particle swarm optimization for data clustering

Author keywords

Adaptive PSO; Cluster centroid; Data clustering; K means clustering; Nelder mean method

Indexed keywords

ADAPTIVE PSO; CLUSTER CENTROIDS; DATA CLUSTERING; K-MEANS CLUSTERING; NELDER MEAN METHOD;

EID: 84873301089     PISSN: 18688071     EISSN: 1868808X     Source Type: Journal    
DOI: 10.1007/s13042-012-0103-y     Document Type: Article
Times cited : (52)

References (26)
  • 3
    • 0036798199 scopus 로고    scopus 로고
    • An evolutionary technique based on K-means algorithm for optimal clustering in RN
    • Bandyopadhyay S, Maulik U (2002) An evolutionary technique based on K-means algorithm for optimal clustering in RN. Inf Sci 146: 221-237.
    • (2002) Inf Sci , vol.146 , pp. 221-237
    • Bandyopadhyay, S.1    Maulik, U.2
  • 7
    • 3042685375 scopus 로고    scopus 로고
    • Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions
    • Fan S-KS, Liang Y-C, Zahara E (2004) Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions. Eng Optim 36: 401-418.
    • (2004) Eng Optim , vol.36 , pp. 401-418
    • Fan, S.-K.S.1    Liang, Y.-C.2    Zahara, E.3
  • 9
    • 77949303709 scopus 로고    scopus 로고
    • A new algorithm for clustering based on particle swarm optimization and K-means
    • Jinxin D, Qi Minyong (2009) A new algorithm for clustering based on particle swarm optimization and K-means. IEEE Int Conf Artif Intell Comput Intell 4: 264-268.
    • (2009) IEEE Int Conf Artif Intell Comput Intell , vol.4 , pp. 264-268
    • Jinxin, D.1    Qi, M.2
  • 10
    • 37349047955 scopus 로고    scopus 로고
    • A Hybridized Approach to Data Clustering
    • Kao Yi-Tung, Zahara E, Kao I-Wei (2007) A Hybridized Approach to Data Clustering. Expert Syst Appl 34: 1754-1762.
    • (2007) Expert Syst Appl , vol.34 , pp. 1754-1762
    • Kao, Y.-T.1    Zahara, E.2    Kao, I.-W.3
  • 13
    • 0030189865 scopus 로고    scopus 로고
    • In search of optimal clusters using genetic algorithms
    • Murthy CA, Chowdhury N (1996) In search of optimal clusters using genetic algorithms. Pattern Recogn Lett 17: 825-832.
    • (1996) Pattern Recogn Lett , vol.17 , pp. 825-832
    • Murthy, C.A.1    Chowdhury, N.2
  • 14
    • 0000238336 scopus 로고
    • A simplex method for function minimization
    • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7: 308-313.
    • (1965) Comput J , vol.7 , pp. 308-313
    • Nelder, J.A.1    Mead, R.2
  • 15
    • 0016473731 scopus 로고
    • The Nelder-Mead simplex procedure for function minimization
    • Olsson DM, Nelson LS (1975) The Nelder-Mead simplex procedure for function minimization'. Technometrics 17: 45-51.
    • (1975) Technometrics , vol.17 , pp. 45-51
    • Olsson, D.M.1    Nelson, L.S.2
  • 16
    • 27644574990 scopus 로고    scopus 로고
    • Differential evolution and particle swarm optimization in partitional clustering
    • Paterlini S, Krink T (2006) Differential evolution and particle swarm optimization in partitional clustering'. Comput Stat Data Anal 50: 1220-1247.
    • (2006) Comput Stat Data Anal , vol.50 , pp. 1220-1247
    • Paterlini, S.1    Krink, T.2
  • 17
    • 84858193278 scopus 로고    scopus 로고
    • A hybrid sequential approach for data clustering using K-Means and particle swarm optimization algorithm
    • Rana S, Jasola S, Kumar R (2010) A hybrid sequential approach for data clustering using K-Means and particle swarm optimization algorithm. Int J Eng Sc Technol 2(6): 167-176.
    • (2010) Int J Eng Sc Technol , vol.2 , Issue.6 , pp. 167-176
    • Rana, S.1    Jasola, S.2    Kumar, R.3
  • 18
    • 79955946974 scopus 로고    scopus 로고
    • A review on particle swarm optimization algorithm and their application to data clustering
    • Rana S, Jasola S, Kumar R (2011) A review on particle swarm optimization algorithm and their application to data clustering. Artificial Intelligence Review Archive 35(3): 211-222.
    • (2011) Artificial Intelligence Review Archive , vol.35 , Issue.3 , pp. 211-222
    • Rana, S.1    Jasola, S.2    Kumar, R.3
  • 19
    • 0021202650 scopus 로고
    • K-means type algorithms: a generalized convergence theorem and characterization of local opti-mality
    • Selim SZ, Ismail MA (1984) K-means type algorithms: a generalized convergence theorem and characterization of local opti-mality. IEEE Transact Pattern Anal Mach Intell 6: 81-87.
    • (1984) IEEE Transact Pattern Anal Mach Intell , vol.6 , pp. 81-87
    • Selim, S.Z.1    Ismail, M.A.2
  • 21
    • 44349127297 scopus 로고    scopus 로고
    • Developing a feature weight self-adjustment Mechanism for k-means clustering Algorithm
    • Tsai CY, Chiu CC (2008) Developing a feature weight self-adjustment Mechanism for k-means clustering Algorithm. Comput Stat Data Anal 52: 4658-4672.
    • (2008) Comput Stat Data Anal , vol.52 , pp. 4658-4672
    • Tsai, C.Y.1    Chiu, C.C.2
  • 22
    • 43249119791 scopus 로고    scopus 로고
    • An effcient kmeans clustering algorithm
    • Zalik KR (2008) An effcient kmeans clustering algorithm. Pattern Recogn Lett 29: 1385-1391.
    • (2008) Pattern Recogn Lett , vol.29 , pp. 1385-1391
    • Zalik, K.R.1
  • 23
    • 79960171154 scopus 로고    scopus 로고
    • Particle swarm optimization for determining fuzzy measures from data
    • Wang XZ, He YL, Dong LC, Zhao HY (2011) Particle swarm optimization for determining fuzzy measures from data. Inf Sci 181(19): 4230-4252.
    • (2011) Inf Sci , vol.181 , Issue.19 , pp. 4230-4252
    • Wang, X.Z.1    He, Y.L.2    Dong, L.C.3    Zhao, H.Y.4
  • 24
    • 84861492561 scopus 로고    scopus 로고
    • Clustering based on Steiner points
    • doi:10.1007/s13042-011-0047-7
    • Liang J, Song W (2011) Clustering based on Steiner points. Int J Mach Learn Cyber. doi: 10. 1007/s13042-011-0047-7.
    • (2011) Int J Mach Learn Cyber
    • Liang, J.1    Song, W.2
  • 25
    • 84857600115 scopus 로고    scopus 로고
    • Clustering data in stationary environments with a local network neighborhood artificial immune system
    • doi:10.1007/s13042-011-0041-0
    • Graaff AJ, Engelbrecht AP (2011) Clustering data in stationary environments with a local network neighborhood artificial immune system. Int J Mach Learn Cyber. doi: 10. 1007/s13042-011-0041-0.
    • (2011) Int J Mach Learn Cyber
    • Graaff, A.J.1    Engelbrecht, A.P.2
  • 26
    • 84861507356 scopus 로고    scopus 로고
    • Soft subspace clustering with an improved feature weight self-adjustment mechanism
    • doi:10.1007/s13042-011-0039-7
    • Guo G, Chen S, Chen L (2011) Soft subspace clustering with an improved feature weight self-adjustment mechanism. Int J Mach Learn Cyber. doi: 10. 1007/s13042-011-0039-7.
    • (2011) Int J Mach Learn Cyber
    • Guo, G.1    Chen, S.2    Chen, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.