-
1
-
-
67649399024
-
Leading a sheltered life: Intracellular pathogens and maintenance of vacuolar compartments
-
Kumar Y, Valdivia RH. 2009. Leading a sheltered life: intracellular pathogens and maintenance of vacuolar compartments. Cell Host Microbe 5:593-601.
-
(2009)
Cell Host Microbe
, vol.5
, pp. 593-601
-
-
Kumar, Y.1
Valdivia, R.H.2
-
2
-
-
53849139142
-
Evolution of intracellular pathogens
-
Casadevall A. 2008. Evolution of intracellular pathogens. Annu. Rev. Microbiol. 62:19-33.
-
(2008)
Annu. Rev. Microbiol.
, vol.62
, pp. 19-33
-
-
Casadevall, A.1
-
3
-
-
28944433798
-
Insights on biology and evolution from microbial genome sequencing
-
Fraser-Liggett CM. 2005. Insights on biology and evolution from microbial genome sequencing. Genome Res. 15:1603-1610.
-
(2005)
Genome Res.
, vol.15
, pp. 1603-1610
-
-
Fraser-Liggett, C.M.1
-
4
-
-
0001252269
-
Infection and disease epidemiology
-
In Stephens RS (ed), ASM Press, Washington, DC
-
Schachter J. 1999. Infection and disease epidemiology, p 139-169. In Stephens RS (ed), Chlamydia: intracellular biology, pathogenesis, and immunity. ASM Press, Washington, DC.
-
(1999)
Chlamydia: Intracellular biology, pathogenesis, and immunity
, pp. 139-169
-
-
Schachter, J.1
-
5
-
-
0017857176
-
Parasite-specified phagocytosis of Chlamydia psittaci and Chlamydia trachomatis by L and HeLa cells
-
Byrne GI, Moulder JW. 1978. Parasite-specified phagocytosis of Chlamydia psittaci and Chlamydia trachomatis by L and HeLa cells. Infect. Immun. 19:598-606.
-
(1978)
Infect. Immun.
, vol.19
, pp. 598-606
-
-
Byrne, G.I.1
Moulder, J.W.2
-
7
-
-
0030826373
-
Chlamydia trachomatis utilizes the host cell microtubule network during early events of infection
-
Clausen JD, Christiansen G, Holst HU, Birkelund S. 1997. Chlamydia trachomatis utilizes the host cell microtubule network during early events of infection. Mol. Microbiol. 25:441-449.
-
(1997)
Mol. Microbiol.
, vol.25
, pp. 441-449
-
-
Clausen, J.D.1
Christiansen, G.2
Holst, H.U.3
Birkelund, S.4
-
8
-
-
0028861536
-
Cytoskeletal requirements in Chlamydia trachomatis infection of host cells
-
Schramm N, Wyrick PB. 1995. Cytoskeletal requirements in Chlamydia trachomatis infection of host cells. Infect. Immun. 63:324-332.
-
(1995)
Infect. Immun.
, vol.63
, pp. 324-332
-
-
Schramm, N.1
Wyrick, P.B.2
-
9
-
-
0141613752
-
Chlamydia trachomatis uses host cell dynein to traffic to the microtubule-organizing center in a p50 dynamitin-independent process
-
Grieshaber SS, Grieshaber NA, Hackstadt T. 2003. Chlamydia trachomatis uses host cell dynein to traffic to the microtubule-organizing center in a p50 dynamitin-independent process. J. Cell Sci. 116:3793-3802.
-
(2003)
J. Cell Sci.
, vol.116
, pp. 3793-3802
-
-
Grieshaber, S.S.1
Grieshaber, N.A.2
Hackstadt, T.3
-
10
-
-
66749142315
-
Centrosome abnormalities during a Chlamydia trachomatis infection are caused by dysregulation of the normal duplication pathway
-
Johnson KA, Tan M, Sütterlin C. 2009. Centrosome abnormalities during a Chlamydia trachomatis infection are caused by dysregulation of the normal duplication pathway. Cell. Microbiol. 11:1064-1073.
-
(2009)
Cell. Microbiol.
, vol.11
, pp. 1064-1073
-
-
Johnson, K.A.1
Tan, M.2
Sütterlin, C.3
-
11
-
-
0029871027
-
Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane
-
Hackstadt T, Rockey DD, Heinzen RA, Scidmore MA. 1996. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J. 15:964-977.
-
(1996)
EMBO J.
, vol.15
, pp. 964-977
-
-
Hackstadt, T.1
Rockey, D.D.2
Heinzen, R.A.3
Scidmore, M.A.4
-
12
-
-
0029034043
-
Lipid metabolism in Chlamydia trachomatis-infected cells: Directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion
-
Hackstadt T, Scidmore M, Rockey D. 1995. Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc. Natl. Acad. Sci. U. S. A. 92:4877-4881.
-
(1995)
Proc. Natl. Acad. Sci. U. S. A.
, vol.92
, pp. 4877-4881
-
-
Hackstadt, T.1
Scidmore, M.2
Rockey, D.3
-
13
-
-
0037974695
-
Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion
-
Carabeo RA, Mead DJ, Hackstadt T. 2003. Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion. Proc. Natl. Acad. Sci. U. S. A. 100:6771-6776.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 6771-6776
-
-
Carabeo, R.A.1
Mead, D.J.2
Hackstadt, T.3
-
14
-
-
79959845500
-
The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites
-
doi:10.1371/journal.ppat.1002092
-
Derré I, Swiss R, Agaisse H. 2011. The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites. PLoS Pathog. 7:e1002092. doi:10.1371/journal.ppat.1002092.
-
(2011)
PLoS Pathog.
, vol.7
-
-
Derré, I.1
Swiss, R.2
Agaisse, H.3
-
15
-
-
78649589014
-
Chlamydia trachomatis intercepts Golgiderived sphingolipids through a Rab14-mediated transport required for bacterial development and replication
-
doi:10.1371/journal.pone.0014084
-
Capmany A, Damiani MT. 2010. Chlamydia trachomatis intercepts Golgiderived sphingolipids through a Rab14-mediated transport required for bacterial development and replication. PLoS One 5:e14084. doi:10.1371/journal.pone.0014084.
-
(2010)
PLoS One
, vol.5
-
-
Capmany, A.1
Damiani, M.T.2
-
16
-
-
80053446744
-
Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development
-
doi:10.1371/journal.ppat.1002198
-
Elwell CA, Jiang S, Kim JH, Lee A, Wittmann T, Hanada K, Melancon P, Engel JN. 2011. Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development. PLoS Pathog. 7:e1002198. doi:10.1371/journal.ppat.1002198.
-
(2011)
PLoS Pathog.
, vol.7
-
-
Elwell, C.A.1
Jiang, S.2
Kim, J.H.3
Lee, A.4
Wittmann, T.5
Hanada, K.6
Melancon, P.7
Engel, J.N.8
-
17
-
-
32244447356
-
Trafficking from CD63-positive late endocytic multivesicular bodies is essential for intracellular development of Chlamydia trachomatis
-
Beatty WL. 2006. Trafficking from CD63-positive late endocytic multivesicular bodies is essential for intracellular development of Chlamydia trachomatis. J. Cell Sci. 119:350-359.
-
(2006)
J. Cell Sci.
, vol.119
, pp. 350-359
-
-
Beatty, W.L.1
-
18
-
-
46449083293
-
Late endocytic multivesicular bodies intersect the chlamydial inclusion in the absence of CD63
-
Beatty WL. 2008. Late endocytic multivesicular bodies intersect the chlamydial inclusion in the absence of CD63. Infect. Immun. 76:2872-2881.
-
(2008)
Infect. Immun.
, vol.76
, pp. 2872-2881
-
-
Beatty, W.L.1
-
19
-
-
84862539845
-
Lipid acquisition by intracellular Chlamydiae
-
Elwell CA, Engel JN. 2012. Lipid acquisition by intracellular Chlamydiae. Cell. Microbiol. 14:1010-1018.
-
(2012)
Cell. Microbiol.
, vol.14
, pp. 1010-1018
-
-
Elwell, C.A.1
Engel, J.N.2
-
20
-
-
59649092835
-
Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction
-
Heuer D, Rejman Lipinski A, Machuy N, Karlas A, Wehrens A, Siedler F, Brinkmann V, Meyer TF. 2009. Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature 457:731-735.
-
(2009)
Nature
, vol.457
, pp. 731-735
-
-
Heuer, D.1
Rejman Lipinski, A.2
Machuy, N.3
Karlas, A.4
Wehrens, A.5
Siedler, F.6
Brinkmann, V.7
Meyer, T.F.8
-
21
-
-
0041856096
-
Toxoplasma gondii: Perfecting an intracellular life style
-
Sibley LD. 2003. Toxoplasma gondii: perfecting an intracellular life style. Traffic 4:581-586.
-
(2003)
Traffic
, vol.4
, pp. 581-586
-
-
Sibley, L.D.1
-
23
-
-
78149255164
-
Host cell invasion by Toxoplasma gondii is temporally regulated by the host microtubule cytoskeleton
-
Sweeney KR, Morrissette NS, LaChapelle S, Blader IJ. 2010. Host cell invasion by Toxoplasma gondii is temporally regulated by the host microtubule cytoskeleton. Eukaryot. Cell 9:1680-1689.
-
(2010)
Eukaryot. Cell
, vol.9
, pp. 1680-1689
-
-
Sweeney, K.R.1
Morrissette, N.S.2
LaChapelle, S.3
Blader, I.J.4
-
24
-
-
56949086405
-
Toxoplasma gondii actively remodels the microtubule network in host cells
-
Walker ME, Hjort EE, Smith SS, Tripathi A, Hornick JE, Hinchcliffe EH, Archer W, Hager KM. 2008. Toxoplasma gondii actively remodels the microtubule network in host cells. Microbes Infect. 10:1440-1449.
-
(2008)
Microbes Infect.
, vol.10
, pp. 1440-1449
-
-
Walker, M.E.1
Hjort, E.E.2
Smith, S.S.3
Tripathi, A.4
Hornick, J.E.5
Hinchcliffe, E.H.6
Archer, W.7
Hager, K.M.8
-
25
-
-
0034599991
-
Toxoplasma gondii exploits host low-density lipoprotein receptor-mediated endocytosis for cholesterol acquisition
-
Coppens I, Sinai AP, Joiner KA. 2000. Toxoplasma gondii exploits host low-density lipoprotein receptor-mediated endocytosis for cholesterol acquisition. J. Cell Biol. 149:167-180.
-
(2000)
J. Cell Biol.
, vol.149
, pp. 167-180
-
-
Coppens, I.1
Sinai, A.P.2
Joiner, K.A.3
-
26
-
-
33646057966
-
Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space
-
Coppens I, Dunn JD, Romano JD, Pypaert M, Zhang H, Boothroyd JC, Joiner KA. 2006. Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space. Cell 125:261-274.
-
(2006)
Cell
, vol.125
, pp. 261-274
-
-
Coppens, I.1
Dunn, J.D.2
Romano, J.D.3
Pypaert, M.4
Zhang, H.5
Boothroyd, J.C.6
Joiner, K.A.7
-
27
-
-
38049125466
-
New host nuclear functions are not required for the modifications of the parasitophorous vacuole of Toxoplasma
-
Romano JD, Bano N, Coppens I. 2008. New host nuclear functions are not required for the modifications of the parasitophorous vacuole of Toxoplasma. Cell. Microbiol. 10:465-476.
-
(2008)
Cell. Microbiol.
, vol.10
, pp. 465-476
-
-
Romano, J.D.1
Bano, N.2
Coppens, I.3
-
28
-
-
0029880362
-
Pathway of C6-NBD-ceramide on the host cell infected with Toxoplasma gondii
-
de Melo EJ, de Souza W. 1996. Pathway of C6-NBD-ceramide on the host cell infected with Toxoplasma gondii. Cell. Struct. Funct. 21:47-52.
-
(1996)
Cell. Struct. Funct.
, vol.21
, pp. 47-52
-
-
de Melo, E.J.1
de Souza, W.2
-
29
-
-
0027097986
-
Penetration of Toxoplasma gondii into host cells induces changes in the distribution of the mitochondria and the endoplasmic reticulum
-
de Melo EJ, de Carvalho TU, de Souza W. 1992. Penetration of Toxoplasma gondii into host cells induces changes in the distribution of the mitochondria and the endoplasmic reticulum. Cell Struct. Funct. 17:311-317.
-
(1992)
Cell Struct. Funct.
, vol.17
, pp. 311-317
-
-
de Melo, E.J.1
de Carvalho, T.U.2
de Souza, W.3
-
30
-
-
0030783010
-
Association of host cell endoplasmic reticulum and mitochondria with the Toxoplasma gondii parasitophorous vacuole membrane: A high affinity interaction
-
Sinai AP, Webster P, Joiner KA. 1997. Association of host cell endoplasmic reticulum and mitochondria with the Toxoplasma gondii parasitophorous vacuole membrane: a high affinity interaction. J. Cell Sci. 110: 2117-2128.
-
(1997)
J. Cell Sci.
, vol.110
, pp. 2117-2128
-
-
Sinai, A.P.1
Webster, P.2
Joiner, K.A.3
-
31
-
-
0026233976
-
Morphological studies of the association of mitochondria with chlamydial inclusions and the fusion of chlamydial inclusions
-
Matsumoto A, Bessho H, Uehira K, Suda T. 1991. Morphological studies of the association of mitochondria with chlamydial inclusions and the fusion of chlamydial inclusions. J. Electron Microsc. 40:356-363.
-
(1991)
J. Electron Microsc.
, vol.40
, pp. 356-363
-
-
Matsumoto, A.1
Bessho, H.2
Uehira, K.3
Suda, T.4
-
32
-
-
84873100908
-
A novel co-infection model with Toxoplasma and Chlamydia trachomatis highlights the importance of host cell manipulation for nutrient scavenging
-
in press
-
Romano JD, de Beaumont C, Carrasco JA, Ehrenman K, Bavoil PM, Coppens I. A novel co-infection model with Toxoplasma and Chlamydia trachomatis highlights the importance of host cell manipulation for nutrient scavenging. Cell. Microbiol., in press.
-
Cell. Microbiol.
-
-
Romano, J.D.1
de Beaumont, C.2
Carrasco, J.A.3
Ehrenman, K.4
Bavoil, P.M.5
Coppens, I.6
-
33
-
-
0028066748
-
Cloning, sequencing, and expression in Escherichia coli of the gene encoding a 45-kilodalton protein, elongation factor Tu, from Chlamydia trachomatis serovar F
-
Zhang YX, Shi Y, Zhou M, Petsko GA. 1994. Cloning, sequencing, and expression in Escherichia coli of the gene encoding a 45-kilodalton protein, elongation factor Tu, from Chlamydia trachomatis serovar F. J. Bacteriol. 176:1184-1187.
-
(1994)
J. Bacteriol.
, vol.176
, pp. 1184-1187
-
-
Zhang, Y.X.1
Shi, Y.2
Zhou, M.3
Petsko, G.A.4
-
35
-
-
77649212621
-
Variable expression of surface-exposed polymorphic membrane proteins in in vitro-grown Chlamydia trachomatis
-
Tan C, Hsia RC, Shou H, Carrasco JA, Rank RG, Bavoil PM. 2010. Variable expression of surface-exposed polymorphic membrane proteins in in vitro-grown Chlamydia trachomatis. Cell. Microbiol. 12:174-187.
-
(2010)
Cell. Microbiol.
, vol.12
, pp. 174-187
-
-
Tan, C.1
Hsia, R.C.2
Shou, H.3
Carrasco, J.A.4
Rank, R.G.5
Bavoil, P.M.6
-
36
-
-
0141521595
-
Host but not parasite cholesterol controls Toxoplasma cell entry by modulating organelle discharge
-
Coppens I, Joiner KA. 2003. Host but not parasite cholesterol controls Toxoplasma cell entry by modulating organelle discharge. Mol. Biol. Cell 14:3804-3820.
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 3804-3820
-
-
Coppens, I.1
Joiner, K.A.2
-
37
-
-
1542547933
-
Use of a quantitative gene expression assay based on micro-array techniques and a mathematical model for the investigation of chlamydial generation time
-
Wilson DP, Mathews S, Wan C, Pettitt AN, McElwain DL. 2004. Use of a quantitative gene expression assay based on micro-array techniques and a mathematical model for the investigation of chlamydial generation time. Bull. Math. Biol. 66:523-537.
-
(2004)
Bull. Math. Biol.
, vol.66
, pp. 523-537
-
-
Wilson, D.P.1
Mathews, S.2
Wan, C.3
Pettitt, A.N.4
McElwain, D.L.5
-
38
-
-
0027946866
-
Persistent chlamydiae: From cell culture to a paradigm for chlamydial pathogenesis
-
Beatty WL, Morrison RP, Byrne GI. 1994. Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. Microbiol. Rev. 58:686-699.
-
(1994)
Microbiol. Rev.
, vol.58
, pp. 686-699
-
-
Beatty, W.L.1
Morrison, R.P.2
Byrne, G.I.3
-
39
-
-
0036786504
-
Chlamydial antigens colocalize within IncA-laden fibers extending from the inclusion membrane into the host cytosol
-
Brown WJ, Skeiky YA, Probst P, Rockey DD. 2002. Chlamydial antigens colocalize within IncA-laden fibers extending from the inclusion membrane into the host cytosol. Infect. Immun. 70:5860-5864.
-
(2002)
Infect. Immun.
, vol.70
, pp. 5860-5864
-
-
Brown, W.J.1
Skeiky, Y.A.2
Probst, P.3
Rockey, D.D.4
-
40
-
-
55849084997
-
Intervacuolar transport and unique topology of GRA14, a novel dense granule protein in Toxoplasma gondii
-
Rome ME, Beck JR, Turetzky JM, Webster P, Bradley PJ. 2008. Intervacuolar transport and unique topology of GRA14, a novel dense granule protein in Toxoplasma gondii. Infect. Immun. 76:4865-4875.
-
(2008)
Infect. Immun.
, vol.76
, pp. 4865-4875
-
-
Rome, M.E.1
Beck, J.R.2
Turetzky, J.M.3
Webster, P.4
Bradley, P.J.5
-
41
-
-
42949109747
-
SNARE protein mimicry by an intracellular bacterium
-
doi:10.1371/journal.ppat.1000022
-
Delevoye C, Nilges M, Dehoux P, Paumet F, Perrinet S, Dautry-Varsat A, Subtil A. 2008. SNARE protein mimicry by an intracellular bacterium. PLoS Pathog. 4:e1000022. doi:10.1371/journal.ppat.1000022.
-
(2008)
PLoS Pathog.
, vol.4
-
-
Delevoye, C.1
Nilges, M.2
Dehoux, P.3
Paumet, F.4
Perrinet, S.5
Dautry-Varsat, A.6
Subtil, A.7
-
42
-
-
70350731222
-
Intracellular bacteria encode inhibitory SNARE-like proteins
-
doi:10.1371/journal.pone.0007375
-
Paumet F, Wesolowski J, Garcia-Diaz A, Delevoye C, Aulner N, Shuman HA, Subtil A, Rothman JE. 2009. Intracellular bacteria encode inhibitory SNARE-like proteins. PLoS One 4:e7375. doi:10.1371/journal.pone.0007375.
-
(2009)
PLoS One
, vol.4
-
-
Paumet, F.1
Wesolowski, J.2
Garcia-Diaz, A.3
Delevoye, C.4
Aulner, N.5
Shuman, H.A.6
Subtil, A.7
Rothman, J.E.8
-
43
-
-
21544468859
-
Development of secondary inclusions in cells infected by Chlamydia trachomatis
-
Suchland RJ, Rockey DD, Weeks SK, Alzhanov DT, Stamm WE. 2005. Development of secondary inclusions in cells infected by Chlamydia trachomatis. Infect. Immun. 73:3954-3962.
-
(2005)
Infect. Immun.
, vol.73
, pp. 3954-3962
-
-
Suchland, R.J.1
Rockey, D.D.2
Weeks, S.K.3
Alzhanov, D.T.4
Stamm, W.E.5
-
44
-
-
0024381619
-
The development of Chlamydia trachomatis inclusions within the host eukaryotic cell during interphase and mitosis
-
Campbell S, Richmond SJ, Yates P. 1989a. The development of Chlamydia trachomatis inclusions within the host eukaryotic cell during interphase and mitosis. J. Gen. Microbiol. 135:1153-1165.
-
(1989)
J. Gen. Microbiol.
, vol.135
, pp. 1153-1165
-
-
Campbell, S.1
Richmond, S.J.2
Yates, P.3
-
45
-
-
0024441330
-
The effect of Chlamydia trachomatis infection on the host cell cytoskeleton and membrane compartments
-
Campbell S, Richmond SJ, Yates PS. 1989b. The effect of Chlamydia trachomatis infection on the host cell cytoskeleton and membrane compartments. J. Gen. Microbiol. 135:2379-2386.
-
(1989)
J. Gen. Microbiol.
, vol.135
, pp. 2379-2386
-
-
Campbell, S.1
Richmond, S.J.2
Yates, P.S.3
-
46
-
-
0025888951
-
Mobilization of F-actin and clathrin during redistribution of Chlamydia trachomatis to an intracellular site in eukaryotic cells
-
Majeed M, Kihlstrom E. 1991. Mobilization of F-actin and clathrin during redistribution of Chlamydia trachomatis to an intracellular site in eukaryotic cells. Infect. Immun. 59:4465-4472.
-
(1991)
Infect. Immun.
, vol.59
, pp. 4465-4472
-
-
Majeed, M.1
Kihlstrom, E.2
-
47
-
-
0037518468
-
Developmentally regulated biosynthesis of carbohydrate and storage polysaccharide during differentiation and tissue cyst formation in Toxoplasma gondii
-
Coppin A, Dzierszinski F, Legrand S, Mortuaire M, Ferguson D, Tomavo S. 2003. Developmentally regulated biosynthesis of carbohydrate and storage polysaccharide during differentiation and tissue cyst formation in Toxoplasma gondii. Biochimie 85:353-361.
-
(2003)
Biochimie
, vol.85
, pp. 353-361
-
-
Coppin, A.1
Dzierszinski, F.2
Legrand, S.3
Mortuaire, M.4
Ferguson, D.5
Tomavo, S.6
-
48
-
-
0029977255
-
Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion
-
Scidmore MA, Fischer ER, Hackstadt T. 1996. Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J. Cell Biol. 134:363-374.
-
(1996)
J. Cell Biol.
, vol.134
, pp. 363-374
-
-
Scidmore, M.A.1
Fischer, E.R.2
Hackstadt, T.3
-
49
-
-
0034526766
-
Host cell-derived sphingolipids are required for the intracellular growth of Chlamydia trachomatis
-
van Ooij C, Kalman L, van Ijzendoorn S, Nishijima M, Hanada K, Mostov K, Engel JN. 2000. Host cell-derived sphingolipids are required for the intracellular growth of Chlamydia trachomatis. Cell. Microbiol. 2:627-637.
-
(2000)
Cell. Microbiol.
, vol.2
, pp. 627-637
-
-
van Ooij, C.1
Kalman, L.2
van Ijzendoorn, S.3
Nishijima, M.4
Hanada, K.5
Mostov, K.6
Engel, J.N.7
-
50
-
-
84855261963
-
Deficiency of a Niemann-Pick, type C1-related protein in Toxoplasma is associated with multiple lipidoses and increased pathogenicity
-
doi:10.1371/journal.ppat.1002410
-
Lige B, Romano JD, Bandaru VV, Ehrenman K, Levitskaya J, Sampels V, Haughey NJ, Coppens I. 2011. Deficiency of a Niemann-Pick, type C1-related protein in Toxoplasma is associated with multiple lipidoses and increased pathogenicity. PLoS Pathog. 7:e1002410. doi:10.1371/journal.ppat.1002410.
-
(2011)
PLoS Pathog.
, vol.7
-
-
Lige, B.1
Romano, J.D.2
Bandaru, V.V.3
Ehrenman, K.4
Levitskaya, J.5
Sampels, V.6
Haughey, N.J.7
Coppens, I.8
-
51
-
-
18244367101
-
Inhibitory effect of aureobasidin A on Toxoplasma gondii
-
Sonda S, Sala G, Ghidoni R, Hemphill A, Pieters J. 2005. Inhibitory effect of aureobasidin A on Toxoplasma gondii. Antimicrob. Agents Chemother. 49:1794-1801.
-
(2005)
Antimicrob. Agents Chemother.
, vol.49
, pp. 1794-1801
-
-
Sonda, S.1
Sala, G.2
Ghidoni, R.3
Hemphill, A.4
Pieters, J.5
-
52
-
-
0036223798
-
Evidence for de novo sphingolipid biosynthesis in Toxoplasma gondii
-
Azzouz N, Rauscher B, Gerold P, Cesbron-Delauw MF, Dubremetz JF, Schwarz RT. 2002. Evidence for de novo sphingolipid biosynthesis in Toxoplasma gondii. Int. J. Parasitol. 32:677-684.
-
(2002)
Int. J. Parasitol.
, vol.32
, pp. 677-684
-
-
Azzouz, N.1
Rauscher, B.2
Gerold, P.3
Cesbron-Delauw, M.F.4
Dubremetz, J.F.5
Schwarz, R.T.6
-
53
-
-
52049122869
-
Two sphingolipid transfer proteins, CERT and FAPP2: Their roles in sphingolipid metabolism
-
Yamaji T, Kumagai K, Tomishige N, Hanada K. 2008. Two sphingolipid transfer proteins, CERT and FAPP2: their roles in sphingolipid metabolism. Life 60:511-518.
-
(2008)
Life
, vol.60
, pp. 511-518
-
-
Yamaji, T.1
Kumagai, K.2
Tomishige, N.3
Hanada, K.4
-
54
-
-
0032885016
-
Significance of host cell kinesin in the development of Chlamydia psittaci
-
Escalante-Ochoa C, Ducatelle R, Charlier G, De Vos K, Haesebrouck F. 1999. Significance of host cell kinesin in the development of Chlamydia psittaci. Infect. Immun. 67:5441-5446.
-
(1999)
Infect. Immun.
, vol.67
, pp. 5441-5446
-
-
Escalante-Ochoa, C.1
Ducatelle, R.2
Charlier, G.3
De Vos, K.4
Haesebrouck, F.5
-
55
-
-
0035833263
-
The Toxoplasma gondii protein ROP2 mediates host organelle association with the parasitophorous vacuole membrane
-
Sinai AP, Joiner KA. 2001. The Toxoplasma gondii protein ROP2 mediates host organelle association with the parasitophorous vacuole membrane. J. Cell Biol. 154:95-108.
-
(2001)
J. Cell Biol.
, vol.154
, pp. 95-108
-
-
Sinai, A.P.1
Joiner, K.A.2
-
56
-
-
75249089782
-
Acquisition of nutrients by Chlamydiae: Unique challenges of living in an intracellular compartment
-
Saka HA, Valdivia RH. 2010. Acquisition of nutrients by Chlamydiae: unique challenges of living in an intracellular compartment. Curr. Opin. Microbiol. 13:4-10.
-
(2010)
Curr. Opin. Microbiol.
, vol.13
, pp. 4-10
-
-
Saka, H.A.1
Valdivia, R.H.2
-
57
-
-
72749123375
-
New insights into Chlamydia intracellular survival mechanisms
-
Cocchiaro JL, Valdivia RH. 2009. New insights into Chlamydia intracellular survival mechanisms. Cell. Microbiol. 11:1571-1578.
-
(2009)
Cell. Microbiol.
, vol.11
, pp. 1571-1578
-
-
Cocchiaro, J.L.1
Valdivia, R.H.2
-
58
-
-
45849145702
-
Host cell manipulation by the human pathogen Toxoplasma gondii
-
Laliberté J, Carruthers VB. 2008. Host cell manipulation by the human pathogen Toxoplasma gondii. Cell. Mol. Life Sci. 65:1900-1915.
-
(2008)
Cell. Mol. Life Sci.
, vol.65
, pp. 1900-1915
-
-
Laliberté, J.1
Carruthers, V.B.2
-
59
-
-
70450208343
-
Penicillin induced persistence in Chlamydia trachomatis: High quality time lapse video analysis of the developmental cycle
-
doi:10.1371/journal.pone.0007723
-
Skilton RJ, Cutcliffen LT, Barlow D, Wang Y, Salim O, Lambden PR, Clarke IN. 2009. Penicillin induced persistence in Chlamydia trachomatis: high quality time lapse video analysis of the developmental cycle. PLoS One 4:e7723. doi:10.1371/journal.pone.0007723.
-
(2009)
PLoS One
, vol.4
-
-
Skilton, R.J.1
Cutcliffen, L.T.2
Barlow, D.3
Wang, Y.4
Salim, O.5
Lambden, P.R.6
Clarke, I.N.7
-
60
-
-
79958768096
-
Chlamydia trachomatis infection causes mitotic spindle pole defects independently from its effects on centrosome amplification
-
Knowlton AE, Brown HM, Richards TS, Andreolas LA, Patel RK, Grieshaber SS. 2011. Chlamydia trachomatis infection causes mitotic spindle pole defects independently from its effects on centrosome amplification. Traffic 12:854-866.
-
(2011)
Traffic
, vol.12
, pp. 854-866
-
-
Knowlton, A.E.1
Brown, H.M.2
Richards, T.S.3
Andreolas, L.A.4
Patel, R.K.5
Grieshaber, S.S.6
-
61
-
-
84866322674
-
Chlamydial infection induces host cytokinesis failure at abscission
-
Brown HM, Knowlton AE, Grieshaber SS. 2012. Chlamydial infection induces host cytokinesis failure at abscission. Cell. Microbiol. 14:1554-1567.
-
(2012)
Cell. Microbiol.
, vol.14
, pp. 1554-1567
-
-
Brown, H.M.1
Knowlton, A.E.2
Grieshaber, S.S.3
-
62
-
-
58549108042
-
Induction of mitotic S-phase of host and neighboring cells by Toxoplasma gondii enhances parasite invasion
-
Lavine MD, Arrizabalaga G. 2009. Induction of mitotic S-phase of host and neighboring cells by Toxoplasma gondii enhances parasite invasion. Mol. Biochem. Parasitol. 164:95-99.
-
(2009)
Mol. Biochem. Parasitol.
, vol.164
, pp. 95-99
-
-
Lavine, M.D.1
Arrizabalaga, G.2
-
63
-
-
42149153850
-
Infection with Toxoplasma gondii results in dysregulation of the host cell cycle
-
Molestina RE, El-Guendy N, Sinai AP. 2008. Infection with Toxoplasma gondii results in dysregulation of the host cell cycle. Cell. Microbiol. 10: 1153-1165.
-
(2008)
Cell. Microbiol.
, vol.10
, pp. 1153-1165
-
-
Molestina, R.E.1
El-Guendy, N.2
Sinai, A.P.3
-
64
-
-
0345151828
-
Toxoplasma gondii resides in a vacuole that avoids fusion with host cell endocytic and exocytic vesicular trafficking pathways
-
Mordue DG, Håkansson S, Niesman I, Sibley LD. 1999. Toxoplasma gondii resides in a vacuole that avoids fusion with host cell endocytic and exocytic vesicular trafficking pathways. Exp. Parasitol. 92:87-99.
-
(1999)
Exp. Parasitol.
, vol.92
, pp. 87-99
-
-
Mordue, D.G.1
Håkansson, S.2
Niesman, I.3
Sibley, L.D.4
-
65
-
-
0021049744
-
Interaction of lysosomes with endocytic vacuoles in macrophages simultaneously infected with Trypanosoma cruzi and Toxoplasma gondii
-
Meirelles MN, De Souza W. 1983. Interaction of lysosomes with endocytic vacuoles in macrophages simultaneously infected with Trypanosoma cruzi and Toxoplasma gondii. J. Submicrosc. Cytol. 15:889-896.
-
(1983)
J. Submicrosc. Cytol.
, vol.15
, pp. 889-896
-
-
Meirelles, M.N.1
De Souza, W.2
-
66
-
-
0025164419
-
Co-infection of macrophages modulates interferon gamma and tumor necrosis factorinduced activation against intracellular pathogens
-
Black CM, Bermudez LE, Young LS, Remington JS. 1990. Co-infection of macrophages modulates interferon gamma and tumor necrosis factorinduced activation against intracellular pathogens. J. Exp. Med. 172:977-980.
-
(1990)
J. Exp. Med.
, vol.172
, pp. 977-980
-
-
Black, C.M.1
Bermudez, L.E.2
Young, L.S.3
Remington, J.S.4
-
67
-
-
0033921864
-
Coinfection of fibroblasts with Coxiella burnetii and Toxoplasma gondii: To each their own
-
Sinai AP, Paul S, Rabinovitch M, Kaplan G, Joiner KA. 2000. Coinfection of fibroblasts with Coxiella burnetii and Toxoplasma gondii: to each their own. Microbes Infect. 2:727-736.
-
(2000)
Microbes Infect.
, vol.2
, pp. 727-736
-
-
Sinai, A.P.1
Paul, S.2
Rabinovitch, M.3
Kaplan, G.4
Joiner, K.A.5
-
68
-
-
0020266408
-
Adenosine nucleotide and lysine transport in Chlamydia psittaci
-
Hatch TP, Al-Hossaing E, Silverman JA. 1982. Adenosine nucleotide and lysine transport in Chlamydia psittaci. J. Bacteriol. 150:662-670.
-
(1982)
J. Bacteriol.
, vol.150
, pp. 662-670
-
-
Hatch, T.P.1
Al-Hossaing, E.2
Silverman, J.A.3
|