메뉴 건너뛰기




Volumn , Issue , 2012, Pages 244-247

Ensemble method based on ARIMA-FFNN for climate forecasting

Author keywords

ARIMA; climate; ensemble; FFNN; forecasting

Indexed keywords

ARIMA; AVERAGING METHOD; CLIMATE; CLIMATE FORECASTING; COMPLEX METHODS; DATA SETS; ENSEMBLE; ENSEMBLE FORECASTING; ENSEMBLE METHODS; FFNN; FORECAST ACCURACY; INDONESIA; TIME SERIES FORECASTING; TRAINING AND TESTING; TRAINING DATA SETS;

EID: 84872973244     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICSSBE.2012.6396565     Document Type: Conference Paper
Times cited : (2)

References (15)
  • 1
    • 79959955254 scopus 로고    scopus 로고
    • Development of Rainfall Forecasting Model in Indonesia by using ASTAR, Transfer Function, and ARIMA Methods
    • B.W. Otok, and Suhartono, "Development of Rainfall Forecasting Model in Indonesia by using ASTAR, Transfer Function, and ARIMA Methods," European Journal of Scientific Research, vol. 38, no.3, pp.386-395, 2009.
    • (2009) European Journal of Scientific Research , vol.38 , Issue.3 , pp. 386-395
    • Otok, B.W.1    Suhartono2
  • 4
    • 51249194645 scopus 로고
    • A Logical calculus of ideas immanent in nervous activity
    • W.S. McCulloch and W. Pitts, "A Logical calculus of ideas immanent in nervous activity," Bulletin of Mathematical Biophysics, vol. 15, pp. 115-133, 1943.
    • (1943) Bulletin of Mathematical Biophysics , vol.15 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 6
    • 0039988139 scopus 로고    scopus 로고
    • Time series forecasting with neural network: A comparative study using the airline data
    • J. Faraway and C. Chatfield, "Time series forecasting with neural network: a comparative study using the airline data," Applied Statistics, vol. 47, pp. 231-250, 1998.
    • (1998) Applied Statistics , vol.47 , pp. 231-250
    • Faraway, J.1    Chatfield, C.2
  • 8
    • 0030243055 scopus 로고    scopus 로고
    • Process modeling using stacked neural network
    • D.V. Sridha, R.C. Seagrave, and E.B. Bartlett, "Process modeling using stacked neural network," AIChE Journal, vol. 42, pp. 2529-2539, 1996.
    • (1996) AIChE Journal , vol.42 , pp. 2529-2539
    • Sridha, D.V.1    Seagrave, R.C.2    Bartlett, E.B.3
  • 10
    • 6344243351 scopus 로고    scopus 로고
    • Artificial neural network ensembles and their application in pooled flood frequency analysis
    • C. Shu, and D.H. Burn, "Artificial neural network ensembles and their application in pooled flood frequency analysis," Water Resource Research, vol. 40, pp. 9, 2004.
    • (2004) Water Resource Research , vol.40 , pp. 9
    • Shu, C.1    Burn, D.H.2
  • 11
    • 77549086197 scopus 로고    scopus 로고
    • Estimation of ice thickness on lakes using artificial neural network ensembles
    • I. Zaier, C. Shu, T.B.M.J. Ouarda, O. Seidou, and F. Chebana, "Estimation of ice thickness on lakes using artificial neural network ensembles," Journal of Hydrology, vol. 383, pp. 330-340, 2010.
    • (2010) Journal of Hydrology , vol.383 , pp. 330-340
    • Zaier, I.1    Shu, C.2    Ouarda, T.B.M.J.3    Seidou, O.4    Chebana, F.5
  • 14
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regression
    • L. Breiman, "Stacked regression," Machine Learning, vol. 24, pp. 49-64, 1996.
    • (1996) Machine Learning , vol.24 , pp. 49-64
    • Breiman, L.1
  • 15
    • 0034288942 scopus 로고    scopus 로고
    • The M3-Competition: Results, conclusions and implications
    • S. Makridakis, and M. Hibon, "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, vol. 16, pp. 451-476, 2000.
    • (2000) International Journal of Forecasting , vol.16 , pp. 451-476
    • Makridakis, S.1    Hibon, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.