메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1581-1584

A distributed SVM ensemble for image classification and annotation

Author keywords

classificaton; ensemble classifiers; MapReduce; SVM

Indexed keywords

CLASSIFICATION ERRORS; CLASSIFICATON; COMBINATION OF CLASSIFIERS; DATA SETS; DISTRIBUTED SVM; ENSEMBLE ALGORITHMS; ENSEMBLE CLASSIFIERS; EXPERIMENTAL ENVIRONMENT; IMAGE ANNOTATION; MAP-REDUCE; SUBSTANTIAL REDUCTION; SVM; TRAINING DATA SETS; TRAINING DATASET; TRAINING PROCESS; TRAINING TIME;

EID: 84872954862     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/FSKD.2012.6234316     Document Type: Conference Paper
Times cited : (11)

References (17)
  • 1
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorization
    • G. Brown, J.Wyatt, R. Harris, X.Yao, Diversity creation methods: a survey and categorization. Information Fusion, 6, 5-20, 2005.
    • (2005) Information Fusion , vol.6 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging predictors. Machine Learning, 24, 123-140, 1996.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 3
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R. Schapire, Y.Freund, P. Bartlett, W. Lee, Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26, 1651-1686, 1998.
    • (1998) The Annals of Statistics , vol.26 , pp. 1651-1686
    • Schapire, R.1    Freund, Y.2    Bartlett, P.3    Lee, W.4
  • 4
    • 26444613298 scopus 로고    scopus 로고
    • Dynamics of variance reduction in bagging and other techniques based on randomisation
    • G. Fumera, R.Roli, A. Serrau, Dynamics of Variance Reduction in Bagging and Other Techniques Based on Randomisation. Multiple Classifier Systems, pp. 316-325, 2005.
    • (2005) Multiple Classifier Systems , pp. 316-325
    • Fumera, G.1    Roli, R.2    Serrau, A.3
  • 5
    • 84958774749 scopus 로고    scopus 로고
    • Support vector machine ensemble with bagging
    • H. Kim, S. Pang, H. Je, D. Kim, S. Bang, Support Vector Machine Ensemble with Bagging. SVM, pp. 397-407, 2002.
    • (2002) SVM , pp. 397-407
    • Kim, H.1    Pang, S.2    Je, H.3    Kim, D.4    Bang, S.5
  • 6
    • 33745924958 scopus 로고    scopus 로고
    • Support vector machines ensemble based on fuzzy integral for classification
    • G. Yan, G. Ma, L. Zhu, Support vector machines ensemble based on fuzzy integral for classification, in: ISNN, pp. 974-980, 2006.
    • (2006) ISNN , pp. 974-980
    • Yan, G.1    Ma, G.2    Zhu, L.3
  • 7
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
    • D. Tao, X. Tang, X. Li, X. Wu, Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 1088- 1099, 2006.
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , pp. 1088-1099
    • Tao, D.1    Tang, X.2    Li, X.3    Wu, X.4
  • 10
    • 56349085999 scopus 로고    scopus 로고
    • Google's mapreduce programming model -revisited
    • R. Lämmel, Google's MapReduce programming model -revisited, Science of Computer Programming, 70, 1-30, 2008.
    • (2008) Science of Computer Programming , vol.70 , pp. 1-30
    • Lämmel, R.1
  • 11
    • 0033870982 scopus 로고    scopus 로고
    • Improved generalization through explicit optimization of margins
    • L. Mason, P. Bartlett, J. Baxter, Improved Generalization through Explicit Optimization of Margins. Machine Learning, 38, 243-255, 2000.
    • (2000) Machine Learning , vol.38 , pp. 243-255
    • Mason, L.1    Bartlett, P.2    Baxter, J.3
  • 12
    • 1942452226 scopus 로고    scopus 로고
    • Low bias bagged support vector machines
    • G. Valentini, T. Dietterich, Low Bias Bagged Support Vector Machines, in: ICML, pp. 752-759, 2003.
    • (2003) ICML , pp. 752-759
    • Valentini, G.1    Dietterich, T.2
  • 14
    • 60649093075 scopus 로고    scopus 로고
    • Highly scalable svm modeling with random granulation for spam sender detection
    • Y. Tang, Y. He, , S. Krasser, Highly Scalable SVM Modeling with Random Granulation for Spam Sender Detection, in: ICMLA, pp. 659-664, 2008.
    • (2008) ICMLA , pp. 659-664
    • Tang, Y.1    He, Y.2    Krasser, S.3
  • 15
    • 0003619255 scopus 로고    scopus 로고
    • Technical Report TR 460, Statistics Department, University of California, Berkeley, CA
    • L. Breiman, Bias, variance and arcing classifiers, Technical Report TR 460, Statistics Department, University of California, Berkeley, CA 1996.
    • (1996) Bias, Variance and Arcing Classifiers
    • Breiman, L.1
  • 16
    • 84872900477 scopus 로고    scopus 로고
    • [Online], (Last accessed: 3 April 2011)
    • Weka 3, [Online]: http://www.cs.waikato.ac.nz/ml/weka/ (Last accessed: 3 April 2011).
    • Weka 3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.