메뉴 건너뛰기




Volumn , Issue , 2012, Pages 240-243

Ensemble method based on ANFIS-ARIMA for rainfall prediction

Author keywords

ANFIS; ARIMA; averaging; ensemble; rainfall

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; ANFIS; ANFIS METHOD; ARIMA; ARIMA MODELS; AUTO-REGRESSIVE INTEGRATED MOVING AVERAGE; AVERAGING; AVERAGING METHOD; DATA SETS; ENSEMBLE; ENSEMBLE FORECASTS; ENSEMBLE METHODS; FORECAST ACCURACY; GAUSSIANS; INDONESIA; RAINFALL DATA; RAINFALL PREDICTION; ROOT OF MEAN SQUARES; TRIANGULAR FUNCTIONS;

EID: 84872951522     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICSSBE.2012.6396564     Document Type: Conference Paper
Times cited : (12)

References (13)
  • 1
    • 84872944935 scopus 로고    scopus 로고
    • Paper presented at the Training Institute on Climate and Society in the Asia-Pacific Region, East-West Center, Honolulu, USA, 5-23 February
    • R. Boer, Strategy to anticipate climate extreme events, Paper presented at the Training Institute on Climate and Society in the Asia-Pacific Region, , East-West Center, Honolulu, USA, 5-23 February 2001.
    • (2001) Strategy to Anticipate Climate Extreme Events
    • Boer, R.1
  • 6
    • 0030243055 scopus 로고    scopus 로고
    • Process modeling using stacked neural network
    • D.V. Sridha, R.C. Seagrave, and ER. Bartlett, "Process modeling using stacked neural network," AIChE Journal, vol. 42, pp. 2529-2539, 1996.
    • (1996) AIChE Journal , vol.42 , pp. 2529-2539
    • Sridha, D.V.1    Seagrave, R.C.2    Bartlett, E.R.3
  • 8
    • 6344243351 scopus 로고    scopus 로고
    • Artificial neural network ensembles and their application in pooled flood frequency analysis
    • C. Shu, and D.H. Burn, "Artificial neural network ensembles and their application in pooled flood frequency analysis," Water Resource Research, vol. 40, pp. 9, 2004.
    • (2004) Water Resource Research , vol.40 , pp. 9
    • Shu, C.1    Burn, D.H.2
  • 9
    • 77549086197 scopus 로고    scopus 로고
    • Estimation of ice thickness on lakes using artificial neural network ensembles
    • I. Zaier, C. Shu, T.B.M.J. Ouarda, O. Seidou, and F. Chebana, "Estimation of ice thickness on lakes using artificial neural network ensembles," Journal of Hydrology, vol. 383, pp. 330-340, 2010.
    • (2010) Journal of Hydrology , vol.383 , pp. 330-340
    • Zaier, I.1    Shu, C.2    Ouarda, T.B.M.J.3    Seidou, O.4    Chebana, F.5
  • 12
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regression
    • L. Breiman, "Stacked regression," Machine Learning, vol. 24, pp. 49-64, 1996.
    • (1996) Machine Learning , vol.24 , pp. 49-64
    • Breiman, L.1
  • 13
    • 0034288942 scopus 로고    scopus 로고
    • The M3-Competition: Results, conclusions and implications
    • S. Makridakis, and M. Hibon, "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, vol. 16, pp. 451-476, 2000.
    • (2000) International Journal of Forecasting , vol.16 , pp. 451-476
    • Makridakis, S.1    Hibon, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.