메뉴 건너뛰기




Volumn 35, Issue 5, 2013, Pages 455-466

Wind speed prediction of target station from reference stations data

Author keywords

artificial neural network; missing data; prediction; target station; wind speed

Indexed keywords

ACCEPTABLE LIMIT; CROSS-CORRELATIONS; ELECTRICAL POWER; INPUT NEURONS; MEASURING STATIONS; MISSING DATA; OUTPUT NEURONS; REFERENCE STATIONS; WIND DATA; WIND SPEED; WIND SPEED PREDICTION;

EID: 84872928960     PISSN: 15567036     EISSN: 15567230     Source Type: Journal    
DOI: 10.1080/15567036.2010.512906     Document Type: Article
Times cited : (17)

References (42)
  • 1
    • 36248997731 scopus 로고    scopus 로고
    • Neural network for the estimation of UV erythemal irradiance using solar broadband irradiance
    • DOI 10.1002/joc.1496
    • Alados, I., Gomera, M. A., Foyo-Moreno, I., and Alados-Arboledas, L. 2007. Neural network for the estimation of UV erythemal irradiance using solar broadband irradiance. Int. J. Climatol. 27:1791-1799. (Pubitemid 350120177)
    • (2007) International Journal of Climatology , vol.27 , Issue.13 , pp. 1791-1799
    • Alados, I.1    Gomera, M.A.2    Foyo-Moreno, I.3    Alados-Arboledas, L.4
  • 2
    • 0041191191 scopus 로고    scopus 로고
    • Artificial neural network for forecasting residential electrical energy
    • DOI 10.1002/(SICI)1099-114X(19990625)23:8<649::AID-ER490>3.0.CO;2-T
    • Al-Shehri, A. 1999. Artificial neural network for forecasting residential electrical energy. Int. J. Energy Res. 23:649-661. (Pubitemid 30500144)
    • (1999) International Journal of Energy Research , vol.23 , Issue.8 , pp. 649-661
    • Al-Shehri, A.1
  • 3
    • 29444457388 scopus 로고    scopus 로고
    • Locally recurrent neural networks for long-term wind speed and power prediction
    • DOI 10.1016/j.neucom.2005.02.003, PII S0925231205000408
    • Barbounis, T. G., and Theocharis, J. B. 2006. Locally recurrent neural networks for long-term wind speed and power prediction. Neurocomputing 69:466-496. (Pubitemid 43009122)
    • (2006) Neurocomputing , vol.69 , Issue.4-6 , pp. 466-496
    • Barbounis, T.G.1    Theocharis, J.B.2
  • 4
    • 33749648818 scopus 로고    scopus 로고
    • Application of artificial neural network for emission prediction of dust pollutants
    • DOI 10.1002/er.1200
    • Bator, R., and Sieniutycz, S. 2006. Application of artificial neural network for emission prediction of dust pollutants. Int. J. Energy Res. 30:1023-1036. (Pubitemid 44538125)
    • (2006) International Journal of Energy Research , vol.30 , Issue.13 , pp. 1023-1036
    • Bator, R.1    Sieniutycz, S.2
  • 5
    • 1642310555 scopus 로고    scopus 로고
    • Correlation of wind speed between neighboring measuring stations
    • Bechrakis, D. A., and Sparis, P. D. 2004. Correlation of wind speed between neighboring measuring stations. IEEE Trans. Energy Convers. 19:400-406.
    • (2004) IEEE Trans. Energy Convers. , vol.19 , pp. 400-406
    • Bechrakis, D.A.1    Sparis, P.D.2
  • 6
    • 78049302300 scopus 로고    scopus 로고
    • Estimation of net electricity consumption of Turkey
    • Bilgili, M. 2009. Estimation of net electricity consumption of Turkey. J. Therm. Sci. Technol. 29:89-98.
    • (2009) J. Therm. Sci. Technol. , vol.29 , pp. 89-98
    • Bilgili, M.1
  • 7
    • 75649096042 scopus 로고    scopus 로고
    • Prediction of long-term monthly temperature and rainfall in Turkey
    • Bilgili, M., and Sahin, B. 2010. Prediction of long-term monthly temperature and rainfall in Turkey. Energy Sources 32:60-71.
    • (2010) Energy Sources , vol.32 , pp. 60-71
    • Bilgili, M.1    Sahin, B.2
  • 8
    • 1942466337 scopus 로고    scopus 로고
    • Wind energy potential in Antakya and Iskenderun regions, Turkey
    • DOI 10.1016/j.renene.2003.10.003, PII S0960148103003094
    • Bilgili, M., Sahin, B., and Kahraman, A. 2004. Wind energy potential in Antakya and Iskenderun regions, Turkey. Renew. Energy 29:1733-1745. (Pubitemid 38531720)
    • (2004) Renewable Energy , vol.29 , Issue.10 , pp. 1733-1745
    • Bilgili, M.1    Sahin, B.2    Kahraman, A.3
  • 9
    • 34250762015 scopus 로고    scopus 로고
    • Application of artificial neural networks for the wind speed prediction of target station using reference stations data
    • DOI 10.1016/j.renene.2006.12.001, PII S0960148106003429
    • Bilgili, M., Sahin, B., and Yasar, A. 2007. Application of artificial neural networks for the wind speed prediction of target station using reference stations data. Renew. Energy 32:2350-2360. (Pubitemid 46962976)
    • (2007) Renewable Energy , vol.32 , Issue.14 , pp. 2350-2360
    • Bilgili, M.1    Sahin, B.2    Yasar, A.3
  • 10
    • 77953252486 scopus 로고    scopus 로고
    • Determination of the soil temperatures in Aegean Region by artificial neural network method
    • Bilgili, M., Simsek, E., and Sahin, B. 2010. Determination of the soil temperatures in Aegean Region by artificial neural network method. J. Therm. Sci. Technol. 30:121-132.
    • (2010) J. Therm. Sci. Technol. , vol.30 , pp. 121-132
    • Bilgili, M.1    Simsek, E.2    Sahin, B.3
  • 11
    • 13944263195 scopus 로고    scopus 로고
    • A classification mechanism for determining average wind speed and power in several regions of Turkey using artificial neural networks
    • DOI 10.1016/j.renene.2004.05.008, PII S0960148104001879
    • Çam, E., Arcakl?oglu, E., Çavusoglu, A., and Akb?y?k, B. 2005. A classification mechanism for determining average wind speed and power in several regions of Turkey using artificial neural networks. Renew. Energy 30:227-239. (Pubitemid 40273944)
    • (2005) Renewable Energy , vol.30 , Issue.2 , pp. 227-239
    • Cam, E.1    Arcaklioglu, E.2    Cavusoglu, A.3    Akbiyik, B.4
  • 12
    • 34548495142 scopus 로고    scopus 로고
    • Development of an artificial neural network model for the steam process of a coal biomass cofired combined heat and power (CHP) plant in Sweden
    • DOI 10.1016/j.energy.2007.04.008, PII S0360544207000722
    • De, S., Kaiadi, M., Fast, M., and Assadi, M. 2007. Development of an artificial neural network model for the steam process of a coal biomass cofired combined heat and power (CHP) plant in Sweden. Energy 32:2099-2109. (Pubitemid 47374970)
    • (2007) Energy , vol.32 , Issue.11 , pp. 2099-2109
    • De, S.1    Kaiadi, M.2    Fast, M.3    Assadi, M.4
  • 13
    • 34247109046 scopus 로고    scopus 로고
    • Prediction of hourly and daily diffuse fraction using neural network, as compared to linear regression models
    • DOI 10.1016/j.energy.2006.10.010, PII S0360544206002969
    • Elminir, H. K., Azzam, Y. A., and Younes, F. I. 2007. Prediction of hourly and daily diffuse fraction using neural network, as compared to linear regression models. Energy 32:1513-1523. (Pubitemid 46591943)
    • (2007) Energy , vol.32 , Issue.8 , pp. 1513-1523
    • Elminir, H.K.1    Azzam, Y.A.2    Younes, F.I.3
  • 14
    • 64849117838 scopus 로고    scopus 로고
    • Generalized regression neural networks and feed forward neural networks for prediction of scour depth around bridge piers
    • Firat, M., and Gungor, M. 2009. Generalized regression neural networks and feed forward neural networks for prediction of scour depth around bridge piers. Adv. Eng. Softw. 40:731-737.
    • (2009) Adv. Eng. Softw. , vol.40 , pp. 731-737
    • Firat, M.1    Gungor, M.2
  • 15
    • 47049099411 scopus 로고    scopus 로고
    • Predicting summer rainfall in the Yangtze River basin with neural networks
    • DOI 10.1002/joc.1588
    • Hartmann, H., Becker, S., and King, L. 2008. Predicting summer rainfall in the Yangtze River basin with neural networks. Int. J. Climatol. 28:925-936. (Pubitemid 351965674)
    • (2008) International Journal of Climatology , vol.28 , Issue.7 , pp. 925-936
    • Hartmann, H.1    Becker, S.2    King, L.3
  • 17
    • 1242308800 scopus 로고    scopus 로고
    • A review on the development of wind energy in Turkey
    • Hepbasli, A., and Ozgener, O. 2004. A review on the development of wind energy in Turkey. Renew. Sustain. Energy Rev. 8:257-276.
    • (2004) Renew. Sustain. Energy Rev. , vol.8 , pp. 257-276
    • Hepbasli, A.1    Ozgener, O.2
  • 18
    • 0034963531 scopus 로고    scopus 로고
    • Artificial neural networks in renewable energy systems applications: A review
    • DOI 10.1016/S1364-0321(01)00006-5, PII S1364032101000065
    • Kalogirou, S. A. 2001. Artificial neural networks in renewable energy systems applications: A review. Renew. Sustain. Energy Rev. 5:373-401. (Pubitemid 32610523)
    • (2001) Renewable and Sustainable Energy Reviews , vol.5 , Issue.4 , pp. 373-401
    • Kalogirou, S.A.1
  • 20
    • 70749125509 scopus 로고    scopus 로고
    • An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran
    • Keyhani, A., Ghasemi-Varnamkhasti, M., Khanali, M., and Abbaszadeh, R. 2010. An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran. Energy 35:188-201.
    • (2010) Energy , vol.35 , pp. 188-201
    • Keyhani, A.1    Ghasemi-Varnamkhasti, M.2    Khanali, M.3    Abbaszadeh, R.4
  • 21
    • 70749096750 scopus 로고    scopus 로고
    • Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol-gasoline blends
    • Kiani Deh Kiani, M., Ghobadian, B., Tavakoli, T., Nikbakht, A. M., and Najafi, G. 2010. Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol-gasoline blends. Energy 35:65-69.
    • (2010) Energy , vol.35 , pp. 65-69
    • Kiani Deh Kiani, M.1    Ghobadian, B.2    Tavakoli, T.3    Nikbakht, A.M.4    Najafi, G.5
  • 22
    • 36049050634 scopus 로고    scopus 로고
    • Practical ways of evaluating wind speed persistence
    • DOI 10.1016/j.energy.2007.07.010, PII S036054420700134X
    • Koçak, K. 2008. Practical ways of evaluating wind speed persistence. Energy 33:65-70. (Pubitemid 350087490)
    • (2008) Energy , vol.33 , Issue.1 , pp. 65-70
    • Kocak, K.1
  • 23
    • 40849137411 scopus 로고    scopus 로고
    • Modeling of electricity consumption in the Asian gaming and tourism center-Macao SAR, People's Republic of China
    • Lai, T. M., To, W. M., Lo, W. C., and Choy, Y. S. 2008. Modeling of electricity consumption in the Asian gaming and tourism center-Macao SAR, People's Republic of China. Energy 33:679-688.
    • (2008) Energy , vol.33 , pp. 679-688
    • Lai, T.M.1    To, W.M.2    Lo, W.C.3    Choy, Y.S.4
  • 24
    • 0035451837 scopus 로고    scopus 로고
    • Using neural networks to estimate wind turbine power generation
    • DOI 10.1109/60.937208, PII S0885896901073338
    • Li, S., Wunsch, D. C., O'Hair, E. A., and Giesselmann, M. G. 2001. Using neural networks to estimate wind turbine power generation. IEEE Trans. Energy Convers. 16:276-282. (Pubitemid 32780121)
    • (2001) IEEE Transactions on Energy Conversion , vol.16 , Issue.3 , pp. 276-282
    • Li, S.1    Wunsch, D.C.2    O'Hair, E.A.3    Giesselmann, M.G.4
  • 25
    • 3142733594 scopus 로고    scopus 로고
    • Potential assessment of a neural network model with PCA/RBF approach for forecasting pollutant trends in Mong Kok urban air, Hong Kong
    • DOI 10.1016/j.envres.2003.11.003, PII S0013935103002159
    • Lu, W. Z., Wang, W. J., Wang. X. K., Yan, S. H., and Lam, J. C. 2004. Potential assessment of a neural network model with PCA/RBF approach for forecasting pollutant trends in Mong Kok urban air, Hong Kong. Environ. Res. 96:79-87. (Pubitemid 38916765)
    • (2004) Environmental Research , vol.96 , Issue.1 , pp. 79-87
    • Lu, W.-Z.1    Wang, W.-J.2    Wang, X.-K.3    Yan, S.-H.4    Lam, J.C.5
  • 26
    • 27744501238 scopus 로고    scopus 로고
    • Artificial neural network application for multi-ecosystem carbon flux simulation
    • DOI 10.1016/j.ecolmodel.2005.03.014, PII S0304380005002061
    • Melesse, A. M., and Hanley, R. S. 2005. Artificial neural network application for multi-ecosystem carbon flux simulation. Ecol. Model. 189:305-314. (Pubitemid 41628238)
    • (2005) Ecological Modelling , vol.189 , Issue.3-4 , pp. 305-314
    • Melesse, A.M.1    Hanley, R.S.2
  • 27
    • 0035442696 scopus 로고    scopus 로고
    • Classification of rainfall variability by using artificial neural networks
    • DOI 10.1002/joc.702
    • Michaelides, S. C., Pattichis, C. S., and Kleovoulou, G. 2001. Classification of rainfall variability by using artificial neural networks. Int. J. Climatol. 21:1401-1414. (Pubitemid 32944212)
    • (2001) International Journal of Climatology , vol.21 , Issue.11 , pp. 1401-1414
    • Michaelides, S.Chr.1    Pattichis, C.S.2    Kleovoulou, G.3
  • 28
    • 0442296729 scopus 로고    scopus 로고
    • Support vector machines for wind speed prediction
    • DOI 10.1016/j.renene.2003.11.009
    • Mohandes, M. A., Halawani, T. O., Rehman, S., and Hussain, A. A. 2004. Support vector machines for wind speed prediction. Renew. Energy 29:939-947. (Pubitemid 38242182)
    • (2004) Renewable Energy , vol.29 , Issue.6 , pp. 939-947
    • Mohandes, M.A.1    Halawani, T.O.2    Rehman, S.3    Hussain, A.A.4
  • 29
    • 0037224608 scopus 로고    scopus 로고
    • Forecasting wind with neural networks
    • DOI 10.1016/S0951-8339(02)00053-9, PII S0951833902000539
    • More, A., and Deo, M. C. 2003. Forecasting wind with neural networks. Marine Struct. 16:35-49. (Pubitemid 36073109)
    • (2003) Marine Structures , vol.16 , Issue.1 , pp. 35-49
    • More, A.1    Deo, M.C.2
  • 30
    • 37249024658 scopus 로고    scopus 로고
    • Drought forecasting using artificial neural networks and time series of drought indices
    • DOI 10.1002/joc.1498
    • Morid, S., Smakhtin, V., and Bagherzadeh, K. 2007. Drought forecasting using artificial neural networks and time series of drought indices. Int. J. Climatol. 27:2103-2111. (Pubitemid 350268751)
    • (2007) International Journal of Climatology , vol.27 , Issue.15 , pp. 2103-2111
    • Morid, S.1    Smakhtin, V.2    Bagherzadeh, K.3
  • 31
    • 27644499727 scopus 로고    scopus 로고
    • Artificial neural network approach to spatial estimation of wind velocity data
    • DOI 10.1016/j.enconman.2005.05.009, PII S0196890405001196
    • Öztopal, A. 2006. Artificial neural network approach to spatial estimation of wind velocity data. Energy Convers.Manage. 47:395-406. (Pubitemid 41563847)
    • (2006) Energy Conversion and Management , vol.47 , Issue.4 , pp. 395-406
    • Oztopal, A.1
  • 32
  • 33
    • 33645212878 scopus 로고    scopus 로고
    • An artificial neural network for modeling reliability, availability and maintainability of a repairable system
    • Rajpal, P. S., Shishodia, K. S., and Sekhon, G. S. 2006. An artificial neural network for modeling reliability, availability and maintainability of a repairable system. Reliabil. Eng. & Sys. Safety 91:809-819.
    • (2006) Reliabil. Eng. & Sys. Safety , vol.91 , pp. 809-819
    • Rajpal, P.S.1    Shishodia, K.S.2    Sekhon, G.S.3
  • 34
    • 0043131837 scopus 로고    scopus 로고
    • Regional assessment of wind power in western Turkey by the cumulative semivariogram method
    • Sen, Z., and Sahin, A. D. 1997. Regional assessment of wind power in western Turkey by the cumulative semivariogram method. Renew. Energy 12:169-177.
    • (1997) Renew. Energy , vol.12 , pp. 169-177
    • Sen, Z.1    Sahin, A.D.2
  • 35
    • 0036779031 scopus 로고    scopus 로고
    • A novel approach for the forecasting of mean hourly wind speed time series
    • DOI 10.1016/S0960-1481(01)00193-8, PII S0960148101001938
    • Sfetsos, A. 2002. A novel approach for the forecasting of mean hourly wind speed time series. Renew. Energy 27:163-174. (Pubitemid 34714500)
    • (2002) Renewable Energy , vol.27 , Issue.2 , pp. 163-174
    • Sfetsos, A.1
  • 36
    • 12444263238 scopus 로고    scopus 로고
    • Forecasting based on neural network approach of solar potential in Turkey
    • Sözen, A., Arcakl?oglu, E., Özalp, M., and Çaglar, N. 2005. Forecasting based on neural network approach of solar potential in Turkey. Renew. Energy 30:1075-1090.
    • (2005) Renew. Energy , vol.30 , pp. 1075-1090
    • Sözen, A.1    Arcakloglu, E.2    Özalp, M.3    Çaglar, N.4
  • 37
    • 0039923446 scopus 로고    scopus 로고
    • Artificial neural networks for thermopiezoelectric systems
    • Sunar, M. 1999. Artificial neural networks for thermopiezoelectric systems. Int. J. Energy Res. 23:1123-1131.
    • (1999) Int. J. Energy Res. , vol.23 , pp. 1123-1131
    • Sunar, M.1
  • 38
    • 34250367489 scopus 로고    scopus 로고
    • Simulation of seasonal precipitation and raindays over Greece: A statistical downscaling technique based on artificial neural networks (ANNs)
    • DOI 10.1002/joc.1442
    • Tolika, K., Maheras, P., Vafiadis, M., Flocas, H. A., and Arseni-Papadimitriou, A. 2007. Simulation of seasonal precipitation and rain days over Greece: A statistical downscaling technique based on artificial neural networks (ANNs). Int. J. Climatol. 27:861-881. (Pubitemid 46916383)
    • (2007) International Journal of Climatology , vol.27 , Issue.7 , pp. 861-881
    • Tolika, K.1    Maheras, P.2    Vafiadis, M.3    Flocas, H.A.4    Arseni-Papadimitriou, A.5
  • 39
    • 34250170125 scopus 로고    scopus 로고
    • Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks
    • DOI 10.1016/j.energy.2006.11.010, PII S0360544206003288
    • Tso, G. K. F., and Yau, K. K. W. 2007. Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. Energy 32:1761-1768. (Pubitemid 46898687)
    • (2007) Energy , vol.32 , Issue.9 , pp. 1761-1768
    • Tso, G.K.F.1    Yau, K.K.W.2
  • 40
    • 62749207101 scopus 로고    scopus 로고
    • Forecast of daily, maximum and minimum temperature time series by three artificial neural network methods
    • Ustaoglu, B., Cigizoglu, H. K., and Karaca, M. 2008. Forecast of daily, maximum and minimum temperature time series by three artificial neural network methods. Meteorol. Appl. 15:431-445.
    • (2008) Meteorol. Appl. , vol.15 , pp. 431-445
    • Ustaoglu, B.1    Cigizoglu, H.K.2    Karaca, M.3
  • 41
    • 43849110145 scopus 로고    scopus 로고
    • An analysis of thermal and solar zone radiation models using an Angstrom-Prescott equation and artificial neural networks
    • Wan, K. K. W., Tang, H. L., Yang, L., and Lam, J. C. 2008. An analysis of thermal and solar zone radiation models using an Angstrom-Prescott equation and artificial neural networks. Energy 33:1115-1127.
    • (2008) Energy , vol.33 , pp. 1115-1127
    • Wan, K.K.W.1    Tang, H.L.2    Yang, L.3    Lam, J.C.4
  • 42
    • 24944577137 scopus 로고    scopus 로고
    • Artificial neural networks applications in building energy predictions and a case study for tropical climates
    • DOI 10.1002/er.1105
    • Yalcintas, M., and Akkurt, S. 2005. Artificial neural networks applications in building energy predictions and a case study for tropical climates. Int. J. Energy Res. 29:891-901. (Pubitemid 41300340)
    • (2005) International Journal of Energy Research , vol.29 , Issue.10 , pp. 891-901
    • Yalcintas, M.1    Akkurt, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.