메뉴 건너뛰기




Volumn 28, Issue 3, 2013, Pages 271-288

Improved particle swarm optimization combined with backpropagation for feedforward neural networks

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARK CLASSIFICATION; CONVERGENCE PERFORMANCE; FASTER CONVERGENCE; FUNCTION APPROXIMATION; GLOBAL SEARCH ABILITY; GRADIENT DESCENT METHOD; HYBRID ALGORITHMS; HYBRID METHOD; LOCAL MINIMUMS; LOCAL SEARCH METHOD; MIXED PHASE; MUTATION OPERATIONS; PREMATURE CONVERGENCE;

EID: 84872909654     PISSN: 08848173     EISSN: 1098111X     Source Type: Journal    
DOI: 10.1002/int.21569     Document Type: Article
Times cited : (28)

References (35)
  • 1
    • 77956338893 scopus 로고    scopus 로고
    • A neural network of smooth hinge functions
    • Wang SN, Huang XL,. A neural network of smooth hinge functions. IEEE Trans Neural Netw 2010; 21: 1381-1395.
    • (2010) IEEE Trans Neural Netw , vol.21 , pp. 1381-1395
    • Wang, S.N.1    Huang, X.L.2
  • 2
    • 77956340081 scopus 로고    scopus 로고
    • Constructive approximation to multivariate function by decay RBF neural network
    • Hou MZ, Han XL,. Constructive approximation to multivariate function by decay RBF neural network. IEEE Trans Neural Netw 2010; 21: 1517-1523.
    • (2010) IEEE Trans Neural Netw , vol.21 , pp. 1517-1523
    • Hou, M.Z.1    Han, X.L.2
  • 3
    • 61849174060 scopus 로고    scopus 로고
    • A nonlinear, recurrence-based approach to traffic classification
    • Francesco P, Ugo F,. A nonlinear, recurrence-based approach to traffic classification. Comput Netw 2009; 53: 761-773.
    • (2009) Comput Netw , vol.53 , pp. 761-773
    • Francesco, P.1    Ugo, F.2
  • 4
    • 63049087592 scopus 로고    scopus 로고
    • A multitask learning model for online pattern recognition
    • Ozawa S, Roy A, Roussinov D,. A multitask learning model for online pattern recognition. IEEE Trans Neural Netw 2009; 20: 430-445.
    • (2009) IEEE Trans Neural Netw , vol.20 , pp. 430-445
    • Ozawa, S.1    Roy, A.2    Roussinov, D.3
  • 5
    • 55749098965 scopus 로고    scopus 로고
    • A simulated annealing-based multiobjective optimization algorithm
    • Bandyopadhyay S, Saha S, Maulik U, Deb K,. A simulated annealing-based multiobjective optimization algorithm. IEEE Trans Evol Comput 2008; 12: 269-283.
    • (2008) IEEE Trans Evol Comput , vol.12 , pp. 269-283
    • Bandyopadhyay, S.1    Saha, S.2    Maulik, U.3    Deb, K.4
  • 6
    • 70449378465 scopus 로고    scopus 로고
    • A GA-based flexible learning algorithm with error tolerance for digital binary neural networks
    • Kabeya S, Abe T, Saito T., A GA-based flexible learning algorithm with error tolerance for digital binary neural networks. Neural Netw 2009; 14: 1476-1480.
    • (2009) Neural Netw , vol.14 , pp. 1476-1480
    • Kabeya, S.1    Abe, T.2    Saito, T.3
  • 7
    • 79951921435 scopus 로고    scopus 로고
    • Evolution computation based learning algorithms of polygonal fuzzy neural networks
    • He C, Ye Y., Evolution computation based learning algorithms of polygonal fuzzy neural networks. Int J Intell Syst 2011; 26 (4): 340-352.
    • (2011) Int J Intell Syst , vol.26 , Issue.4 , pp. 340-352
    • He, C.1    Ye, Y.2
  • 8
    • 42249086989 scopus 로고    scopus 로고
    • Particle swarm optimization: Basic concepts, variants and applications in power systems
    • del Valle Y, Venayagamoorthy GK, Mohagheghi S,. Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans Evol Comput 2008; 12: 171-195.
    • (2008) IEEE Trans Evol Comput , vol.12 , pp. 171-195
    • Del Valle, Y.1    Venayagamoorthy, G.K.2    Mohagheghi, S.3
  • 9
    • 80053053621 scopus 로고    scopus 로고
    • A dynamic optimization approach for adaptive incremental learning
    • Kapp MN, Sabourin R, Maupin P,. A dynamic optimization approach for adaptive incremental learning. Int J Intell Syst 2011; 26 (11): 1101-1124.
    • (2011) Int J Intell Syst , vol.26 , Issue.11 , pp. 1101-1124
    • Kapp, M.N.1    Sabourin, R.2    Maupin, P.3
  • 10
    • 36248979779 scopus 로고    scopus 로고
    • Elman backpropagation as reinforcement for simple recurrent networks
    • Andre G., Elman backpropagation as reinforcement for simple recurrent networks. Neural Comput 2007; 19: 3108-3131.
    • (2007) Neural Comput , vol.19 , pp. 3108-3131
    • Andre, G.1
  • 11
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Huang G-B, Chen L,. Convex incremental extreme learning machine. Neurocomputing 2007; 70 (16-18): 3056-3062.
    • (2007) Neurocomputing , vol.70 , Issue.1618 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 12
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • Huang G-B, Zhu Q-Y, Siew C-K., Extreme learning machine: theory and applications. Neurocomputing 2006; 70 (1-3): 489-501.
    • (2006) Neurocomputing , vol.70 , Issue.13 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 13
    • 33748435315 scopus 로고    scopus 로고
    • Integrating the improved CBP model with kernel SOM
    • Dai Q, Chen SC., Integrating the improved CBP model with kernel SOM. Neurocomputing 2006; 69: 2208-2216.
    • (2006) Neurocomputing , vol.69 , pp. 2208-2216
    • Dai, Q.1    Chen, S.C.2
  • 14
    • 34247887369 scopus 로고    scopus 로고
    • A new backpropagation learning algorithm for layered neural netwroks with nondifferentiable units
    • Takahumi O, Hidenori N, Kazuhisa W., A new backpropagation learning algorithm for layered neural netwroks with nondifferentiable units. Neural Comput 2007; 19: 1422-1435.
    • (2007) Neural Comput , vol.19 , pp. 1422-1435
    • Takahumi, O.1    Hidenori, N.2    Kazuhisa, W.3
  • 15
    • 75749105756 scopus 로고    scopus 로고
    • Application of fuzzy adaptive back-propagation neural network in thermal conductivity gas analyzer
    • Wang XZ, Zhang T, He L., Application of fuzzy adaptive back-propagation neural network in thermal conductivity gas analyzer. Neurocomputing 2010; 73: 679-683.
    • (2010) Neurocomputing , vol.73 , pp. 679-683
    • Wang, X.Z.1    Zhang, T.2    He, L.3
  • 17
    • 63349091633 scopus 로고    scopus 로고
    • A novel global optimization technique for high dimensional functions
    • Grosan C, Abraham A,. A novel global optimization technique for high dimensional functions. Int J Intell Syst 2009; 24 (4): 421-440.
    • (2009) Int J Intell Syst , vol.24 , Issue.4 , pp. 421-440
    • Grosan, C.1    Abraham, A.2
  • 18
    • 8844224953 scopus 로고    scopus 로고
    • A particle swarm optimizer with passive congregation
    • He S, Wu QH, Wen JY,. A particle swarm optimizer with passive congregation. Biosystems 2004; 78: 135-147.
    • (2004) Biosystems , vol.78 , pp. 135-147
    • He, S.1    Wu, Q.H.2    Wen, J.Y.3
  • 19
    • 4344575392 scopus 로고    scopus 로고
    • A diversity-guided particle swarm optimizer - The ARPSO
    • Riget J, Vesterstrom JS., A diversity-guided particle swarm optimizer-the ARPSO. EVAlife Tech Report 2: 2002.
    • (2002) EVAlife Tech Report , vol.2
    • Riget, J.1    Vesterstrom, J.S.2
  • 20
    • 0034869626 scopus 로고    scopus 로고
    • Fuzzy adaptive particle swarm optimization
    • Shi Y, Eberhary RC., Fuzzy adaptive particle swarm optimization. Evol Comput 2001; 1: 101-106.
    • (2001) Evol Comput , vol.1 , pp. 101-106
    • Shi, Y.1    Eberhary, R.C.2
  • 21
    • 81155155674 scopus 로고    scopus 로고
    • A new gradient based particle swarm optimization algorithm for accurate computation of global minimum
    • Noel MM., A new gradient based particle swarm optimization algorithm for accurate computation of global minimum. Appl Soft Comput 2012; 12 (1): 353-359.
    • (2012) Appl Soft Comput , vol.12 , Issue.1 , pp. 353-359
    • Noel, M.M.1
  • 22
    • 58149461398 scopus 로고    scopus 로고
    • Classification of mental task from EEG data using neural networks based on particle swarm optimization
    • Lin CJ, Hsieh MH., Classification of mental task from EEG data using neural networks based on particle swarm optimization. Neurocomputing 2009; 72: 1121-1130.
    • (2009) Neurocomputing , vol.72 , pp. 1121-1130
    • Lin, C.J.1    Hsieh, M.H.2
  • 23
    • 38649118854 scopus 로고    scopus 로고
    • Evolving artificial neural networks using an improved PSO and DPSO
    • Yu JB, Wang SJ, Xi LF., Evolving artificial neural networks using an improved PSO and DPSO. Neurocomputing 2008; 71: 1054-1060.
    • (2008) Neurocomputing , vol.71 , pp. 1054-1060
    • Yu, J.B.1    Wang, S.J.2    Xi, L.F.3
  • 24
    • 71749096569 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks by multi-dimensional particle swarm optimization
    • Serkan K, Turker I, Alper Y, Moncerf G,. Evolutionary artificial neural networks by multi-dimensional particle swarm optimization. Neural Netw 2009; 22: 1448-1462.
    • (2009) Neural Netw , vol.22 , pp. 1448-1462
    • Serkan, K.1    Turker, I.2    Alper, Y.3    Moncerf, G.4
  • 25
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mapping by neural networks
    • Funahashi K., On the approximate realization of continuous mapping by neural networks. Neural Netw 1989; 2 (3): 183-192.
    • (1989) Neural Netw , vol.2 , Issue.3 , pp. 183-192
    • Funahashi, K.1
  • 26
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal, approximators
    • Hornik K, Stinchcombe M, White H., Multilayer feedforward networks are universal, approximators. Neural Netw 1989; 2 (5): 359-366.
    • (1989) Neural Netw , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 27
    • 0031700696 scopus 로고    scopus 로고
    • A modified particle swarm optimizer
    • Shi Y, Eberhart RC., A modified particle swarm optimizer. Comput Intell 1998; 6: 69-73.
    • (1998) Comput Intell , vol.6 , pp. 69-73
    • Shi, Y.1    Eberhart, R.C.2
  • 30
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V., Support-vector networks. Mach Learn 1995; 20: 273-297.
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 31
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of the on-line learning and an application to boosting
    • Fruend Y, Schapire RE., A decision-theoretic generalization of the on-line learning and an application to boosting. J Comput System Sci 1997; 55 (1): 119-139.
    • (1997) J Comput System Sci , vol.55 , Issue.1 , pp. 119-139
    • Fruend, Y.1    Schapire, R.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.