메뉴 건너뛰기




Volumn 2012, Issue 1, 2012, Pages

Bayesian approach with prior models which enforce sparsity in signal and image processing

Author keywords

Bayesian approach; Inverse problems; Sparse priors; Sparsity

Indexed keywords

BAYESIAN APPROACHES; BAYESIAN COMPUTATION; BAYESIAN ESTIMATORS; BAYESIAN INFERENCE; DENSITY ESTIMATION; DIRICHLET; ELASTIC NET; EXHAUSTIVE LISTS; GAUSSIANS; GENERALIZED GAUSSIAN; HEAVY-TAILED; MAXIMUM A POSTERIORI; MIXTURE MODEL; MIXTURE OF GAUSSIANS; MULTINOMIALS; POSTERIOR MEANS; PROBABILISTIC MODELS; RELATIVE COMPLEXITY; SIGNAL AND IMAGE PROCESSING; SPARSE PRIOR; SPARSE SIGNALS; SPARSITY; VARIATIONAL BAYES APPROXIMATIONS; WEIBULL;

EID: 84872906065     PISSN: 16876172     EISSN: 16876180     Source Type: Journal    
DOI: 10.1186/1687-6180-2012-52     Document Type: Review
Times cited : (60)

References (54)
  • 1
    • 0001300995 scopus 로고
    • Regularization of incorrectly posed problems
    • A Tikhonov, Regularization of incorrectly posed problems. Soviet Math Dokl. 4, 1624-1627 (1963)
    • (1963) Soviet Math Dokl. , vol.4 , pp. 1624-1627
    • Tikhonov, A.1
  • 3
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • DOI 10.1002/cpa.20042
    • I Daubechies, M Defrise, CD Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm Pure Appl Math. 57, 1413-1457 (2004). doi:10.1002/cpa.20042 (Pubitemid 39427442)
    • (2004) Communications on Pure and Applied Mathematics , vol.57 , Issue.11 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    De Mol, C.3
  • 4
    • 33645712892 scopus 로고    scopus 로고
    • Compressive sampling
    • DL Donoho, Compressive sampling. IEEE Trans Inf Theory. 52(4), 1289-1306 (2006)
    • (2006) IEEE Trans Inf Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.L.1
  • 5
    • 30844445842 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit
    • DOI 10.1016/j.sigpro.2005.05.030, PII S0165168405002227, Sparse Approximations in Signal and Image Processing
    • JA Tropp, AC Gilbert, MJ Strauss, Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit. Signal Processing, special issue "sparse approximations in signal and image processing". 86, 572-588 (2006) (Pubitemid 43106572)
    • (2006) Signal Processing , vol.86 , Issue.3 , pp. 572-588
    • Tropp, J.A.1    Gilbert, A.C.2    Strauss, M.J.3
  • 6
    • 30844461481 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part II: Convex relaxation
    • DOI 10.1016/j.sigpro.2005.05.031, PII S0165168405002239, Sparse Approximations in Signal and Image Processing
    • JA Tropp, Algorithms for simultaneous sparse approximation. Part II: Convex relaxation. Signal Process (special issue "Sparse approximations in signal and image processing"). 86, 589-602 (2006) (Pubitemid 43106573)
    • (2006) Signal Processing , vol.86 , Issue.3 , pp. 589-602
    • Tropp, J.A.1
  • 7
    • 84864045468 scopus 로고    scopus 로고
    • Cambridge, MA: MIT Press
    • R Zass, A Shashua, in Nonnegative Sparse PCA, vol. 19. (Cambridge, MA: MIT Press, 2007), pp. 1561-1568
    • (2007) Nonnegative Sparse PCA , vol.19 , pp. 1561-1568
    • Zass, R.1    Shashua, A.2
  • 8
    • 57349174008 scopus 로고    scopus 로고
    • Enhancing sparsity by reweighted l1 minimization
    • doi:10.1007/s00041-008-9045-x
    • EJ Candés, M Wakin, S Boyd, Enhancing sparsity by reweighted l1 minimization. J Fourier Anal Appl. 14, 877-905 (2008). doi:10.1007/s00041-008- 9045-x
    • (2008) J Fourier Anal Appl. , vol.14 , pp. 877-905
    • Candés, E.J.1    Wakin, M.2    Boyd, S.3
  • 9
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • doi:10.1093/biostatistics/kxp008
    • DM Witten, R Tibshirani, T Hastie, A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics. 10(3), 515-534 (2009). doi:10.1093/biostatistics/kxp008
    • (2009) Biostatistics , vol.10 , Issue.3 , pp. 515-534
    • Witten, D.M.1    Tibshirani, R.2    Hastie, T.3
  • 11
    • 84872979573 scopus 로고    scopus 로고
    • Learning analysis sparsity priors
    • G Peyré, J Fadili, Learning Analysis Sparsity Priors. Proc of Sampta' 11 http://hal.archives-ouvertes.fr/hal-00542016/ (2011)
    • (2011) Proc of Sampta'11
    • Peyré, G.1    Fadili, J.2
  • 12
    • 0000673452 scopus 로고
    • Bayesian regularization and pruning using a Laplace prior
    • P Williams, Bayesian regularization and pruning using a Laplace prior. Neural Comput. 71, 117-143 (1995)
    • (1995) Neural Comput. , vol.71 , pp. 117-143
    • Williams, P.1
  • 13
    • 0000130839 scopus 로고
    • Bayesian variable selection in linear regression
    • doi:10.2307/2290129
    • T Mitchell, J Beauchamp, Bayesian variable selection in linear regression. J Am Stat Assoc. 83(404), 1023 (1988). doi:10.2307/2290129
    • (1988) J Am Stat Assoc. , vol.83 , Issue.404 , pp. 1023
    • Mitchell, T.1    Beauchamp, J.2
  • 14
    • 79957438558 scopus 로고    scopus 로고
    • Shrink globally, act locally: Sparse Bayesian regularization and prediction
    • N Polson, J Scott, Shrink globally, act locally: sparse Bayesian regulariza-tion and prediction. Bayesian Stat. 9, 1-24 (2010)
    • (2010) Bayesian Stat. , vol.9 , pp. 1-24
    • Polson, N.1    Scott, J.2
  • 16
    • 0030384188 scopus 로고    scopus 로고
    • Joint estimation of parameters and hyperparameters in a Bayesian approach of solving inverse problems
    • Lausanne, Swisse
    • A Mohammad-Djafari, Joint estimation of parameters and hyperparameters in a Bayesian approach of solving inverse problems, in IEEE Int Conf on Image Processing (ICIP), IEEE ICIP 96, vol. II. (Lausanne, Swisse, 1996), pp. 473-477
    • (1996) IEEE Int Conf on Image Processing (ICIP), IEEE ICIP 96 , vol.2 , pp. 473-477
    • Mohammad-Djafari, A.1
  • 17
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • R Neal, G Hinton, A view of the EM algorithm that justifies incremental, sparse, and other variants. Learn Graph Models. 89, 355-368 (1998)
    • (1998) Learn Graph Models , vol.89 , pp. 355-368
    • Neal, R.1    Hinton, G.2
  • 18
    • 0031101750 scopus 로고    scopus 로고
    • Bayesian estimation of state-space models applied to deconvolution of Bernoulli-Gaussian processes
    • PII S0165168496001922
    • A Doucet, P Duvaut, Bayesian estimation of state-space models applied to deconvolution of Bernoulli-Gaussian processes. Signal Process. 57(2), 147-161 (1997). doi:10.1016/S0165-1684 (96) 00192-2 (Pubitemid 127403390)
    • (1997) Signal Processing , vol.57 , Issue.2 , pp. 147-161
    • Doucet, A.1    Duvaut, P.2
  • 19
    • 49549105778 scopus 로고    scopus 로고
    • The Bayesian lasso
    • doi:10.1198/016214508000000337
    • T Park, G Casella, The Bayesian Lasso. J Am Stat Assoc. 103(482), 681-686 (2008). doi:10.1198/016214508000000337
    • (2008) J Am Stat Assoc. , vol.103 , Issue.482 , pp. 681-686
    • Park, T.1    Casella, G.2
  • 20
    • 0001224048 scopus 로고    scopus 로고
    • Sparse bayesian learning and the relevance vector machine
    • DOI 10.1162/15324430152748236
    • M Tipping, Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res. 1, 211-244 (2001) (Pubitemid 33687203)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 21
    • 34347404627 scopus 로고    scopus 로고
    • A Bayesian aproach for blind separation of sparse source
    • C Févotte, S Godsill, A Bayesian aproach for blind separation of sparse source. IEEE Trans Audio Speech Lang Process. 14, 2174-2188 (2006)
    • (2006) IEEE Trans Audio Speech Lang Process , vol.14 , pp. 2174-2188
    • Févotte, C.1    Godsill, S.2
  • 23
    • 78650337471 scopus 로고    scopus 로고
    • Inference with normal-gamma prior distributions in regression problems
    • J Griffin, P Brown, Inference with normal-gamma prior distributions in regression problems. Bayesian Anal. 5, 171-188 (2010)
    • (2010) Bayesian Anal. , vol.5 , pp. 171-188
    • Griffin, J.1    Brown, P.2
  • 24
    • 33947270567 scopus 로고    scopus 로고
    • Bayesian blind separation of generalized hyperbolic processes in noisy and underdeterminate mixtures
    • DOI 10.1109/TSP.2006.877660
    • H Snoussi, J Idier, Bayesian blind separation of generalized hyperbolic processes in noisy and underdeterminate mixtures. IEEE Trans Signa Process. 54, 3257-3269 (2006) (Pubitemid 46414207)
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.9 , pp. 3257-3269
    • Snoussi, H.1    Idier, J.2
  • 25
    • 22944460748 scopus 로고    scopus 로고
    • Spike and slab variable selection: Frequentist and bayesian strategies
    • DOI 10.1214/009053604000001147
    • H Ishwaran, JS Rao, Spike and slab variable selection: frequentist and Bayesian strategies. Ann Stat. 33(2), 730-733 (2005). doi:10.1214/ 009053604000001147 (Pubitemid 41053721)
    • (2005) Annals of Statistics , vol.33 , Issue.2 , pp. 730-773
    • Ishwaran, H.1    Rao, J.S.2
  • 26
    • 67149143365 scopus 로고    scopus 로고
    • Factor analysis latent subspace modeling and robust fuzzy clustering using t-distributionsclassification of binary random patterns
    • S Chatzis, T Varvarigou, Factor analysis latent subspace modeling and robust fuzzy clustering using t-distributionsclassification of binary random patterns. IEEE Trans Fuzzy Syst. 17, 505-517 (2009)
    • (2009) IEEE Trans Fuzzy Syst. , vol.17 , pp. 505-517
    • Chatzis, S.1    Varvarigou, T.2
  • 27
    • 0027624429 scopus 로고
    • Generalized Gaussian image model for edge-preserving MAP estimation
    • DOI 10.1109/83.236536
    • CA Bouman, KD Sauer, A generalized Gaussian image model for edgepreserving MAP estimation. IEEE Trans Image Process. 2(3), 296-310 (1993). doi:10.1109/83.236536 (Pubitemid 23697158)
    • (1993) IEEE Transactions on Image Processing , vol.2 , Issue.3 , pp. 296-310
    • Bouman Charles1    Sauer Ken2
  • 31
    • 0030393877 scopus 로고    scopus 로고
    • Unsupervised deconvolution of sparse spike trains using stochastic approximation
    • PII S1053587X96090551
    • F Champagnat, Y Goussard, J Idier, Unsupervised deconvolution of sparse spike trains using stochastic approximation. IEEE Trans Signal Process. 44(12), 2988-2998 (1996). doi:10.1109/78.553473 (Pubitemid 126778045)
    • (1996) IEEE Transactions on Signal Processing , vol.44 , Issue.12 , pp. 2988-2998
    • Champagnat, F.1    Goussard, Y.2    Idier, J.3
  • 33
    • 0020126947 scopus 로고
    • Maximum-likelihood detection and estimation of Bernoulli-Gaussian processes
    • doi:10.1109/TIT.1982.1056496
    • JJ Kormylo, JM Mendel, Maximum-likelihood detection and estimation of Bernoulli-Gaussian processes. IEEE Trans Inf Theory. 28, 482-488 (1982). doi:10.1109/TIT.1982.1056496
    • (1982) IEEE Trans Inf Theory , vol.28 , pp. 482-488
    • Kormylo, J.J.1    Mendel, J.M.2
  • 34
    • 0027635089 scopus 로고
    • Bayesian deconvolution of Bernoulli-Gaussian processes
    • M Lavielle, Bayesian deconvolution of Bernoulli-Gaussian processes. Signal Process. 33, 67-79 (1993)
    • (1993) Signal Process , vol.33 , pp. 67-79
    • Lavielle, M.1
  • 35
    • 69249086984 scopus 로고    scopus 로고
    • Gauss-Markov-Potts priors for images in computer tomography resulting to joint optimal reconstruction and segmentation
    • A Mohammad-Djafari, Gauss-Markov-Potts priors for images in computer tomography resulting to joint optimal reconstruction and segmentation. Int J Tomography Stat. 11(W09), 76-92 http://djafari.free.fr/pdf/IJTS08.pdf (2008)
    • (2008) Int J Tomography Stat. , vol.11 , pp. 76-92
    • Mohammad-Djafari, A.1
  • 37
    • 77954078474 scopus 로고    scopus 로고
    • Bayesian inversion for optical diffraction tomography
    • doi:10.1080/09500340903564702
    • H Ayasso, B Duchne, A Mohammad-Djafari, Bayesian inversion for optical diffraction tomography. J Modern Opt. 57(9), 765-776 (2010). doi:10.1080/09500340903564702
    • (2010) J Modern Opt. , vol.57 , Issue.9 , pp. 765-776
    • Ayasso, H.1    Duchne, B.2    Mohammad-Djafari, A.3
  • 38
    • 77955781188 scopus 로고    scopus 로고
    • Joint NDT image restoration and segmentation using Gauss-Markov-Potts prior models and variational Bayesian computation
    • H Ayasso, A Mohammad-Djafari, Joint NDT image restoration and segmentation using Gauss-Markov-Potts prior models and variational Bayesian computation. IEEE Trans. Image Process. 19(9), 2265-2277 http://dx.doi.org/10. 1109/TIP.2010.2047902 (2010)
    • (2010) IEEE Trans. Image Process , vol.19 , Issue.9 , pp. 2265-2277
    • Ayasso, H.1    Mohammad-Djafari, A.2
  • 41
    • 28544440194 scopus 로고    scopus 로고
    • Microwave imaging of inhomogeneous objects made of a finite number of dielectric and conductive materials from experimental data
    • DOI 10.1088/0266-5611/21/6/S08, PII S026656110598341X
    • O Féron, B Duchêne, A Mohammad-Djafari, Microwave imaging of inhomogeneous objects made of a finite number of dielectric and conductive materials from experimental data. Inverse Probl. 21(6), 95-115 http://djafari.free.fr/pdf/ (2005). doi:10.1088/0266-5611/21/6/S08 (Pubitemid 41744522)
    • (2005) Inverse Problems , vol.21 , Issue.6
    • Feron, O.1    Duchene, B.2    Mohammad-Djafari, A.3
  • 43
    • 2342569641 scopus 로고    scopus 로고
    • Fast joint separation and segmentation of mixed images
    • doi:10.1117/1.1666873
    • H Snoussi, A Mohammad-Djafari, Fast joint separation and segmentation of mixed images. J Electron Imag. 13(2), 349-361 http://djafari.free.fr/pdf/ (2004). doi:10.1117/1.1666873
    • (2004) J Electron Imag. , vol.13 , Issue.2 , pp. 349-361
    • Snoussi, H.1    Mohammad-Djafari, A.2
  • 44
    • 3543071602 scopus 로고    scopus 로고
    • Bayesian unsupervised learning for source separation with mixture of Gaussians prior
    • H Snoussi, A Mohammad-Djafari, Bayesian unsupervised learning for source separation with mixture of Gaussians prior. J VLSI Signal Process Syst. 37(2/3), 263-279 http://djafari.free.fr/pdf/VLSIpapar.pdf (2004)
    • (2004) J VLSI Signal Process Syst. , vol.37 , Issue.2-3 , pp. 263-279
    • Snoussi, H.1    Mohammad-Djafari, A.2
  • 45
    • 84872955036 scopus 로고    scopus 로고
    • Bayesian source separation: Beyond PCA and ICA
    • Belgium
    • A Mohammad-Djafari, Bayesian source separation: beyond PCA and ICA, in ESANN 2006, (Belgium, 2006) http://djafari.free.fr/pdf
    • (2006) ESANN 2006
    • Mohammad-Djafari, A.1
  • 46
    • 33745611158 scopus 로고    scopus 로고
    • Hidden Markov models for wavelet-based blind source separation
    • DOI 10.1109/TIP.2006.877068
    • M Ichir, A Mohammad-Djafari, Hidden Markov models for wavelet-based blind source separation. IEEE Trans Image Process. 15(7), 1887-1899 (2006) (Pubitemid 43985069)
    • (2006) IEEE Transactions on Image Processing , vol.15 , Issue.7 , pp. 1887-1899
    • Ichir, M.M.1    Mohammad-Djafari, A.2
  • 47
    • 0036535033 scopus 로고    scopus 로고
    • Regulariza-tion, maximum entropy and probabilistic methods in mass spectrometry data processing problems
    • doi:10.1016/S1387-3806 01 00562-0
    • A Mohammad-Djafari, J Giovannelli, G Demoment, J Idier, Regulariza-tion, maximum entropy and probabilistic methods in mass spectrometry data processing problems. Int J Mass Spectrom. 215(1-3), 175-193 http://djafari.free.fr/pdf/ maspec12013.pdf (2002). doi:10.1016/S1387-3806 (01) 00562-0
    • (2002) Int J Mass Spectrom , vol.215 , Issue.1-3 , pp. 175-193
    • Mohammad-Djafari, A.1    Giovannelli, J.2    Demoment, G.3    Idier, J.4
  • 48
    • 33750402597 scopus 로고    scopus 로고
    • Separation of non-negative mixture of non-negative sources using a Bayesian approach and MCMC sampling
    • DOI 10.1109/TSP.2006.880310
    • S Moussaoui, D Brie, A Mohammad-Djafari, C Carteret, Separation of nonnegative mixture of non-negative sources using a Bayesian approach and MCMC sampling. IEEE Trans Signal Process. 54(11), 4133-4145 (2006) (Pubitemid 44637747)
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.11 , pp. 4133-4145
    • Moussaoui, S.1    Brie, D.2    Mohammad-Djafari, A.3    Carteret, C.4
  • 49
    • 39549088344 scopus 로고    scopus 로고
    • Bayesian approach with Hidden Markov modeling and mean field approximation for hyperspectral data analysis
    • DOI 10.1109/TIP.2007.914227
    • N Bali, A Mohammad-Djafari, Bayesian approach with hidden Markov modeling and mean field approximation for hyperspectral data analysis. IEEE Trans Image Process. 17(2), 217-225 (2008) (Pubitemid 351279249)
    • (2008) IEEE Transactions on Image Processing , vol.17 , Issue.2 , pp. 217-225
    • Bali, N.1    Mohammad-Djafari, A.2
  • 50
    • 33645738721 scopus 로고    scopus 로고
    • Super-resolution using hidden Markov model and bayesian detection estimation framework
    • Special number on Super-Resolution Imaging: Analysis, Algorithms, and Applications, doi=10.1155/ASP/2006/36971, Article ID 36971
    • F Humblot, A Mohammad-Djafari, Super-resolution using hidden Markov model and bayesian detection estimation framework, in EURASIP J Appl Signal Process, vol. 16. (Special number on Super-Resolution Imaging: Analysis, Algorithms, and Applications, 2006) http://www.hindawi.com/GetArticle.aspx? doi=10.1155/ASP/ 2006/36971. Article ID 36971
    • (2006) EURASIP J Appl Signal Process , vol.16
    • Humblot, F.1    Mohammad-Djafari, A.2
  • 51
    • 77955797326 scopus 로고    scopus 로고
    • Super-resolution: A short review, a new method based on hidden Markov modeling of HR image and future challenges
    • A Mohammad-Djafari, Super-resolution: a short review, a new method based on hidden Markov modeling of HR image and future challenges. Comput J http://djafari.free.fr/pdf/bxn005v1.pdf (2008)
    • (2008) Comput J
    • Mohammad-Djafari, A.1
  • 52
    • 78651273630 scopus 로고    scopus 로고
    • Joint super-resolution and segmentation from a set of low resolution images using a Bayesian approach with a Gauss-Markov-Potts prior
    • doi:10.1504/IJSISE.2010.038017
    • M Mansouri, A Mohammad-Djafari, Joint super-resolution and segmentation from a set of low resolution images using a Bayesian approach with a Gauss-Markov-Potts prior. Int J Signal Imag Syst Eng. 3(4), 211-221 (2010). doi:10.1504/IJSISE.2010.038017
    • (2010) Int J Signal Imag Syst Eng. , vol.3 , Issue.4 , pp. 211-221
    • Mansouri, M.1    Mohammad-Djafari, A.2
  • 53
    • 23444449865 scopus 로고    scopus 로고
    • Image fusion and joint segmentation using an MCMC algorithm
    • paper no. 023014
    • O Féron, A Mohammad-Djafari, Image fusion and joint segmentation using an MCMC algorithm. J Electron Imag. 14 (2) http://arxiv.org/abs/physics/ 0403150 (2005). paper no. 023014
    • (2005) J Electron Imag. , vol.14 , Issue.2
    • Féron, O.1    Mohammad-Djafari, A.2
  • 54
    • 33644653930 scopus 로고    scopus 로고
    • Unsupervised Bayesian wavelet domain segmentation using a Potts-Markov random field modeling
    • P Brault, A Mohammad-Djafari, Unsupervised Bayesian wavelet domain segmentation using a Potts-Markov random field modeling. J Electron Imag. 14 (4) http://djafari.free.fr/pdf/ (2005). 043011-1-043011-16
    • (2005) J Electron Imag. , vol.14 , Issue.4 , pp. 0430111-04301116
    • Brault, P.1    Mohammad-Djafari, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.