메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1414-1420

Imitation learning in relational domains: A functional-gradient boosting approach

Author keywords

[No Author keywords available]

Indexed keywords

BOOSTING APPROACH; DIFFERENT DOMAINS; FUNCTIONAL GRADIENT; HUMAN TEACHERS; IMITATION LEARNING; RELATIONAL REGRESSION TREE; RELATIONAL REPRESENTATIONS;

EID: 84872856015     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.5591/978-1-57735-516-8/IJCAI11-239     Document Type: Conference Paper
Times cited : (54)

References (36)
  • 1
    • 14344251217 scopus 로고    scopus 로고
    • Apprenticeship learning via inverse reinforcement learning
    • P. Abbeel and A. Ng. Apprenticeship learning via inverse reinforcement learning. In ICML, 2004.
    • (2004) ICML
    • Abbeel, P.1    Ng, A.2
  • 3
    • 0032069371 scopus 로고    scopus 로고
    • Top-down induction of first order logical decision trees
    • H. Blockeel. Top-down induction of first order logical decision trees. AI Commun., 12(1-2), 1999.
    • (1999) AI Commun. , vol.12 , Issue.1-2
    • Blockeel, H.1
  • 4
    • 84880891360 scopus 로고    scopus 로고
    • Symbolic dynamic programming for first-order mdps
    • C. Boutilier. Symbolic dynamic programming for first-order mdps. In IJCAI, 2001.
    • (2001) IJCAI
    • Boutilier, C.1
  • 6
    • 33749249600 scopus 로고    scopus 로고
    • The relationship between precision-recall and ROC curves
    • J. Davis and M. Goadrich. The relationship between precision-recall and ROC curves. In ICML, 2006.
    • (2006) ICML
    • Davis, J.1    Goadrich, M.2
  • 7
    • 14344252373 scopus 로고    scopus 로고
    • Training conditional random fields via gradient tree boosting
    • T.G. Dietterich, A. Ashenfelter, and Y. Bulatov. Training conditional random fields via gradient tree boosting. In ICML, 2004.
    • (2004) ICML
    • Dietterich, T.G.1    Ashenfelter, A.2    Bulatov, Y.3
  • 8
    • 2842560201 scopus 로고
    • STRIPS: A new approach to the application of theorem proving to problem solving
    • R. Fikes and N. Nilsson. STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intelligence, 2:189-208, 1971.
    • (1971) Artificial Intelligence , vol.2 , pp. 189-208
    • Fikes, R.1    Nilsson, N.2
  • 9
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In ICML, 1996.
    • (1996) ICML
    • Freund, Y.1    Schapire, R.2
  • 10
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J.H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29, 2001.
    • (2001) Annals of Statistics , pp. 29
    • Friedman, J.H.1
  • 12
    • 44449170889 scopus 로고    scopus 로고
    • Exploiting first-order regression in inductive policy selection
    • C. Gretton and S. Thibaux. Exploiting first-order regression in inductive policy selection. In UAI, 2004.
    • (2004) UAI
    • Gretton, C.1    Thibaux, S.2
  • 13
    • 84855674138 scopus 로고    scopus 로고
    • Tilde-CRF: Conditional random fields for logical sequences
    • B. Gutmann and K. Kersting. Tilde-CRF: Conditional random fields for logical sequences. In ECML, 2006.
    • (2006) ECML
    • Gutmann, B.1    Kersting, K.2
  • 14
    • 58849123822 scopus 로고    scopus 로고
    • Stochastic planning with first order decision diagrams
    • S. Joshi and R. Khardon. Stochastic planning with first order decision diagrams. In ICAPS, 2008.
    • (2008) ICAPS
    • Joshi, S.1    Khardon, R.2
  • 15
    • 67049169348 scopus 로고    scopus 로고
    • Boosting relational sequence alignments
    • A. Karwath, K. Kersting, and N. Landwehr. Boosting relational sequence alignments. In ICDM, 2008.
    • (2008) ICDM
    • Karwath, A.1    Kersting, K.2    Landwehr, N.3
  • 16
    • 56449088242 scopus 로고    scopus 로고
    • Non-parametric policy gradients: A unified treatment of propositional and relational domains
    • K. Kersting and K. Driessens. Non-parametric policy gradients: A unified treatment of propositional and relational domains. In ICML, 2008.
    • (2008) ICML
    • Kersting, K.1    Driessens, K.2
  • 18
    • 0033189384 scopus 로고    scopus 로고
    • Learning action strategies for planning domains
    • DOI 10.1016/S0004-3702(99)00060-0
    • R. Khardon. Learning action strategies for planning domains. Artificial Intelligence, 113:125-148, 1999. (Pubitemid 30542740)
    • (1999) Artificial Intelligence , vol.113 , Issue.1 , pp. 125-148
    • Khardon, R.1
  • 19
    • 84881073978 scopus 로고    scopus 로고
    • Batch reinforcement learning with state importance. Poster
    • L. Li, V. Bulitko, and R. Greiner. Batch reinforcement learning with state importance. In ECML - Poster, 2004.
    • (2004) ECML
    • Li, L.1    Bulitko, V.2    Greiner, R.3
  • 20
    • 85011529894 scopus 로고    scopus 로고
    • Programming by example (introduction)
    • H. Lieberman. Programming by example (introduction). Communications of the ACM, 43:72-74, 2000.
    • (2000) Communications of the ACM , vol.43 , pp. 72-74
    • Lieberman, H.1
  • 22
    • 84889753643 scopus 로고    scopus 로고
    • Gradient-based boosting for Statistical Relational Learning: The Relational Dependency Network Case
    • S. Natarajan, T. Khot, K. Kersting, B. Guttmann, and J. Shavlik. Gradient-based boosting for Statistical Relational Learning: The Relational Dependency Network Case. MLJ, 2011.
    • (2011) MLJ
    • Natarajan, S.1    Khot, T.2    Kersting, K.3    Guttmann, B.4    Shavlik, J.5
  • 23
    • 80053212134 scopus 로고    scopus 로고
    • Apprenticeship learning using inverse reinforcement learning and gradient methods
    • G. Neu and C. Szepesvari. Apprenticeship learning using inverse reinforcement learning and gradient methods. In Proceedings of UAI, pages 295-302, 2007.
    • (2007) Proceedings of UAI , pp. 295-302
    • Neu, G.1    Szepesvari, C.2
  • 24
    • 0042547347 scopus 로고    scopus 로고
    • Algorithms for inverse reinforcement learning
    • A. Ng and S. Russell. Algorithms for inverse reinforcement learning. In ICML, 2000.
    • (2000) ICML
    • Ng, A.1    Russell, S.2
  • 26
    • 67650957592 scopus 로고    scopus 로고
    • Learning to search: Functional gradient techniques for imitation learning
    • N. Ratliff, D. Silver, and A. Bagnell. Learning to search: Functional gradient techniques for imitation learning. Autonomous Robots, pages 25-53, 2009.
    • (2009) Autonomous Robots , pp. 25-53
    • Ratliff, N.1    Silver, D.2    Bagnell, A.3
  • 28
    • 84894671097 scopus 로고    scopus 로고
    • Explanation-based manipulator learning: Acquisition of planning ability through observation
    • A. Segre and G. DeJong. Explanation-based manipulator learning: Acquisition of planning ability through observation. In Conf on Robotics and Automation, 1985.
    • Conf on Robotics and Automation, 1985
    • Segre, A.1    DeJong, G.2
  • 29
    • 1542788921 scopus 로고
    • BAGGER: An EBL system that extends and generalizes explanations
    • J. Shavlik and G. DeJong. BAGGER: An EBL system that extends and generalizes explanations. In AAAI, 1987.
    • (1987) AAAI
    • Shavlik, J.1    DeJong, G.2
  • 31
    • 0013528313 scopus 로고    scopus 로고
    • Scaling reinforcement learning toward RoboCup soccer
    • P. Stone and R. Sutton. Scaling reinforcement learning toward RoboCup soccer. In ICML, 2001.
    • (2001) ICML
    • Stone, P.1    Sutton, R.2
  • 32
    • 84898939480 scopus 로고    scopus 로고
    • Policy gradient methods for reinforcement learning with function approximation
    • R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement learning with function approximation. In NIPS, 2000.
    • (2000) NIPS
    • Sutton, R.1    McAllester, D.2    Singh, S.3    Mansour, Y.4
  • 33
    • 56449122183 scopus 로고    scopus 로고
    • A gametheoretic approach to apprenticeship learning
    • U. Syed and R. Schapire. A gametheoretic approach to apprenticeship learning. In NIPS, 2007.
    • (2007) NIPS
    • Syed, U.1    Schapire, R.2
  • 34
    • 57749085102 scopus 로고    scopus 로고
    • Relational macros for transfer in reinforcement learning
    • L. Torrey, J. Shavlik, T. Walker, and R. Maclin. Relational macros for transfer in reinforcement learning. In ILP, 2007.
    • (2007) ILP
    • Torrey, L.1    Shavlik, J.2    Walker, T.3    Maclin, R.4
  • 35
    • 13444310066 scopus 로고    scopus 로고
    • Inductive policy selection for first-order mdps
    • S. Yoon, A. Fern, and R. Givan. Inductive policy selection for first-order mdps. In UAI, 2002.
    • (2002) UAI
    • Yoon, S.1    Fern, A.2    Givan, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.