-
1
-
-
14344251217
-
Apprenticeship learning via inverse reinforcement learning
-
P. Abbeel and A. Ng. Apprenticeship learning via inverse reinforcement learning. In ICML, 2004.
-
(2004)
ICML
-
-
Abbeel, P.1
Ng, A.2
-
2
-
-
63149159130
-
A survey of robot learning from demonstration
-
B. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from demonstration. Robotics and Autonomous Systems, 57:469-483, 2009.
-
(2009)
Robotics and Autonomous Systems
, vol.57
, pp. 469-483
-
-
Argall, B.1
Chernova, S.2
Veloso, M.3
Browning, B.4
-
3
-
-
0032069371
-
Top-down induction of first order logical decision trees
-
H. Blockeel. Top-down induction of first order logical decision trees. AI Commun., 12(1-2), 1999.
-
(1999)
AI Commun.
, vol.12
, Issue.1-2
-
-
Blockeel, H.1
-
4
-
-
84880891360
-
Symbolic dynamic programming for first-order mdps
-
C. Boutilier. Symbolic dynamic programming for first-order mdps. In IJCAI, 2001.
-
(2001)
IJCAI
-
-
Boutilier, C.1
-
6
-
-
33749249600
-
The relationship between precision-recall and ROC curves
-
J. Davis and M. Goadrich. The relationship between precision-recall and ROC curves. In ICML, 2006.
-
(2006)
ICML
-
-
Davis, J.1
Goadrich, M.2
-
7
-
-
14344252373
-
Training conditional random fields via gradient tree boosting
-
T.G. Dietterich, A. Ashenfelter, and Y. Bulatov. Training conditional random fields via gradient tree boosting. In ICML, 2004.
-
(2004)
ICML
-
-
Dietterich, T.G.1
Ashenfelter, A.2
Bulatov, Y.3
-
8
-
-
2842560201
-
STRIPS: A new approach to the application of theorem proving to problem solving
-
R. Fikes and N. Nilsson. STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intelligence, 2:189-208, 1971.
-
(1971)
Artificial Intelligence
, vol.2
, pp. 189-208
-
-
Fikes, R.1
Nilsson, N.2
-
9
-
-
0002978642
-
Experiments with a new boosting algorithm
-
Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In ICML, 1996.
-
(1996)
ICML
-
-
Freund, Y.1
Schapire, R.2
-
10
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
J.H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29, 2001.
-
(2001)
Annals of Statistics
, pp. 29
-
-
Friedman, J.H.1
-
12
-
-
44449170889
-
Exploiting first-order regression in inductive policy selection
-
C. Gretton and S. Thibaux. Exploiting first-order regression in inductive policy selection. In UAI, 2004.
-
(2004)
UAI
-
-
Gretton, C.1
Thibaux, S.2
-
13
-
-
84855674138
-
Tilde-CRF: Conditional random fields for logical sequences
-
B. Gutmann and K. Kersting. Tilde-CRF: Conditional random fields for logical sequences. In ECML, 2006.
-
(2006)
ECML
-
-
Gutmann, B.1
Kersting, K.2
-
14
-
-
58849123822
-
Stochastic planning with first order decision diagrams
-
S. Joshi and R. Khardon. Stochastic planning with first order decision diagrams. In ICAPS, 2008.
-
(2008)
ICAPS
-
-
Joshi, S.1
Khardon, R.2
-
16
-
-
56449088242
-
Non-parametric policy gradients: A unified treatment of propositional and relational domains
-
K. Kersting and K. Driessens. Non-parametric policy gradients: A unified treatment of propositional and relational domains. In ICML, 2008.
-
(2008)
ICML
-
-
Kersting, K.1
Driessens, K.2
-
18
-
-
0033189384
-
Learning action strategies for planning domains
-
DOI 10.1016/S0004-3702(99)00060-0
-
R. Khardon. Learning action strategies for planning domains. Artificial Intelligence, 113:125-148, 1999. (Pubitemid 30542740)
-
(1999)
Artificial Intelligence
, vol.113
, Issue.1
, pp. 125-148
-
-
Khardon, R.1
-
19
-
-
84881073978
-
-
Batch reinforcement learning with state importance. Poster
-
L. Li, V. Bulitko, and R. Greiner. Batch reinforcement learning with state importance. In ECML - Poster, 2004.
-
(2004)
ECML
-
-
Li, L.1
Bulitko, V.2
Greiner, R.3
-
20
-
-
85011529894
-
Programming by example (introduction)
-
H. Lieberman. Programming by example (introduction). Communications of the ACM, 43:72-74, 2000.
-
(2000)
Communications of the ACM
, vol.43
, pp. 72-74
-
-
Lieberman, H.1
-
22
-
-
84889753643
-
Gradient-based boosting for Statistical Relational Learning: The Relational Dependency Network Case
-
S. Natarajan, T. Khot, K. Kersting, B. Guttmann, and J. Shavlik. Gradient-based boosting for Statistical Relational Learning: The Relational Dependency Network Case. MLJ, 2011.
-
(2011)
MLJ
-
-
Natarajan, S.1
Khot, T.2
Kersting, K.3
Guttmann, B.4
Shavlik, J.5
-
23
-
-
80053212134
-
Apprenticeship learning using inverse reinforcement learning and gradient methods
-
G. Neu and C. Szepesvari. Apprenticeship learning using inverse reinforcement learning and gradient methods. In Proceedings of UAI, pages 295-302, 2007.
-
(2007)
Proceedings of UAI
, pp. 295-302
-
-
Neu, G.1
Szepesvari, C.2
-
24
-
-
0042547347
-
Algorithms for inverse reinforcement learning
-
A. Ng and S. Russell. Algorithms for inverse reinforcement learning. In ICML, 2000.
-
(2000)
ICML
-
-
Ng, A.1
Russell, S.2
-
26
-
-
67650957592
-
Learning to search: Functional gradient techniques for imitation learning
-
N. Ratliff, D. Silver, and A. Bagnell. Learning to search: Functional gradient techniques for imitation learning. Autonomous Robots, pages 25-53, 2009.
-
(2009)
Autonomous Robots
, pp. 25-53
-
-
Ratliff, N.1
Silver, D.2
Bagnell, A.3
-
28
-
-
84894671097
-
Explanation-based manipulator learning: Acquisition of planning ability through observation
-
A. Segre and G. DeJong. Explanation-based manipulator learning: Acquisition of planning ability through observation. In Conf on Robotics and Automation, 1985.
-
Conf on Robotics and Automation, 1985
-
-
Segre, A.1
DeJong, G.2
-
29
-
-
1542788921
-
BAGGER: An EBL system that extends and generalizes explanations
-
J. Shavlik and G. DeJong. BAGGER: An EBL system that extends and generalizes explanations. In AAAI, 1987.
-
(1987)
AAAI
-
-
Shavlik, J.1
DeJong, G.2
-
31
-
-
0013528313
-
Scaling reinforcement learning toward RoboCup soccer
-
P. Stone and R. Sutton. Scaling reinforcement learning toward RoboCup soccer. In ICML, 2001.
-
(2001)
ICML
-
-
Stone, P.1
Sutton, R.2
-
32
-
-
84898939480
-
Policy gradient methods for reinforcement learning with function approximation
-
R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement learning with function approximation. In NIPS, 2000.
-
(2000)
NIPS
-
-
Sutton, R.1
McAllester, D.2
Singh, S.3
Mansour, Y.4
-
33
-
-
56449122183
-
A gametheoretic approach to apprenticeship learning
-
U. Syed and R. Schapire. A gametheoretic approach to apprenticeship learning. In NIPS, 2007.
-
(2007)
NIPS
-
-
Syed, U.1
Schapire, R.2
-
34
-
-
57749085102
-
Relational macros for transfer in reinforcement learning
-
L. Torrey, J. Shavlik, T. Walker, and R. Maclin. Relational macros for transfer in reinforcement learning. In ILP, 2007.
-
(2007)
ILP
-
-
Torrey, L.1
Shavlik, J.2
Walker, T.3
Maclin, R.4
-
35
-
-
13444310066
-
Inductive policy selection for first-order mdps
-
S. Yoon, A. Fern, and R. Givan. Inductive policy selection for first-order mdps. In UAI, 2002.
-
(2002)
UAI
-
-
Yoon, S.1
Fern, A.2
Givan, R.3
-
36
-
-
31144453572
-
The first probabilistic track of the International Planning Competition
-
H. Younes, M. Littman, D. Weissman, and J. Asmuth. The first probabilistic track of the international planning competition. JAIR, 24:851-887, 2005. (Pubitemid 43130951)
-
(2005)
Journal of Artificial Intelligence Research
, vol.24
, pp. 851-887
-
-
Younes, H.L.S.1
Littman, M.L.2
Weissman, D.3
Asmuth, J.4
|