-
2
-
-
56449098092
-
-
Doctoral dissertation, Robotics Institute, Carnegie Mellon University, Pittsburg, Pa, USA
-
Bagnell, J. (2004). Learning decisions: Robustness, uncertainty, and approximation. Doctoral dissertation, Robotics Institute, Carnegie Mellon University, Pittsburg, Pa, USA.
-
(2004)
Learning decisions: Robustness, uncertainty, and approximation
-
-
Bagnell, J.1
-
3
-
-
56449099641
-
-
Technical Report CMU-RI-TR-03-45, Robotics Institute, Carnegie Mellon University, Pittsburg, Pa, USA
-
Bagnell, J., & Schneider, J. (2003). Policy search in reproducing kernel hilbert space (Technical Report CMU-RI-TR-03-45). Robotics Institute, Carnegie Mellon University, Pittsburg, Pa, USA.
-
(2003)
Policy search in reproducing kernel hilbert space
-
-
Bagnell, J.1
Schneider, J.2
-
4
-
-
0013495368
-
Experiments with infinite-horizon, policy-gradient estimation
-
Baxter, J., Bartlett, P., & Weaver, L. (2001). Experiments with infinite-horizon, policy-gradient estimation. Journal of Arificial Intellifence Research (JAIR), 15, 351-381.
-
(2001)
Journal of Arificial Intellifence Research (JAIR)
, vol.15
, pp. 351-381
-
-
Baxter, J.1
Bartlett, P.2
Weaver, L.3
-
6
-
-
0032069371
-
Top-down induction of first order logical decision trees
-
Blockeel, H., & De Raedt, L. (1998). Top-down induction of first order logical decision trees. Artificial Intelligence, 101, 285-297.
-
(1998)
Artificial Intelligence
, vol.101
, pp. 285-297
-
-
Blockeel, H.1
De Raedt, L.2
-
7
-
-
0003802343
-
-
Belmont: Wadsworth
-
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. Belmont: Wadsworth.
-
(1984)
Classification and regression trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
9
-
-
14344252373
-
Training conditional random fields via gradient tree boosting
-
Banff, Canada
-
Dietterich, T., Ashenfelter, A., & Bulatov, Y. (2004). Training conditional random fields via gradient tree boosting. Proceedings of the 21st International Conference on Machine Learning (pp. 217-224). Banff, Canada.
-
(2004)
Proceedings of the 21st International Conference on Machine Learning
, pp. 217-224
-
-
Dietterich, T.1
Ashenfelter, A.2
Bulatov, Y.3
-
11
-
-
4444312102
-
Integrating guidance into relational reinforcement learning
-
Driessens, K., & Dzeroski, S. (2004). Integrating guidance into relational reinforcement learning. Machine Learning, 57, 271-304.
-
(2004)
Machine Learning
, vol.57
, pp. 271-304
-
-
Driessens, K.1
Dzeroski, S.2
-
12
-
-
1942421161
-
Relational instance based regression for relational reinforcement learning
-
Washington, DC, USA
-
Driessens, K., & Ramon, J. (2003). Relational instance based regression for relational reinforcement learning. Proceedings of the 20th International. Conference on Machine Learning (pp. 123-130) Washington, DC, USA.
-
(2003)
Proceedings of the 20th International. Conference on Machine Learning
, pp. 123-130
-
-
Driessens, K.1
Ramon, J.2
-
13
-
-
84948172455
-
Speeding up relational reinforcement learning through the use of an incremental first order decision tree learner
-
Freiburg, Germany
-
Driessens, K., Ramon, J., & Blockeel, H. (2001). Speeding up relational reinforcement learning through the use of an incremental first order decision tree learner. Proceedings of the 12th European Conference on Machine Learning (pp. 97-108), Freiburg, Germany.
-
(2001)
Proceedings of the 12th European Conference on Machine Learning
, pp. 97-108
-
-
Driessens, K.1
Ramon, J.2
Blockeel, H.3
-
14
-
-
0035312760
-
Relational reinforcement learning
-
Dzeroski, S., De Raedt, L., & Driessens, K. (2001). Relational reinforcement learning. Machine Learning, 43, 7-52.
-
(2001)
Machine Learning
, vol.43
, pp. 7-52
-
-
Dzeroski, S.1
De Raedt, L.2
Driessens, K.3
-
15
-
-
21844465127
-
Tree-based batch mode reinforcement learning
-
Ernst, D., Geurts, P., & Wehenkel, L. (2005). Tree-based batch mode reinforcement learning. Journal of Machine Learning Research (JMLR), 6, 503-556.
-
(2005)
Journal of Machine Learning Research (JMLR)
, vol.6
, pp. 503-556
-
-
Ernst, D.1
Geurts, P.2
Wehenkel, L.3
-
16
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
Friedman, J. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29, 1189-1232.
-
(2001)
Annals of Statistics
, vol.29
, pp. 1189-1232
-
-
Friedman, J.1
-
17
-
-
9444289940
-
Graph kernels and gaussian processes for relational reinforcement learning
-
Szeged, Hungary
-
Gärtner, T., Driessens, K., & Ramon, J. (2003). Graph kernels and gaussian processes for relational reinforcement learning. International Conference on Inductive Logic Programming (pp. 146-163) Szeged, Hungary.
-
(2003)
International Conference on Inductive Logic Programming
, pp. 146-163
-
-
Gärtner, T.1
Driessens, K.2
Ramon, J.3
-
19
-
-
4544236179
-
Coordinated reinforcement learning
-
Sydney, Australia
-
Guestrin, C., Lagoudakis, M., & Parr, R. (2002). Coordinated reinforcement learning. Proceedings of the 19th International Conference on Machine Learning (pp. 227-234) Sydney, Australia.
-
(2002)
Proceedings of the 19th International Conference on Machine Learning
, pp. 227-234
-
-
Guestrin, C.1
Lagoudakis, M.2
Parr, R.3
-
21
-
-
14344249892
-
Bellman goes relational
-
Banff, Canada
-
Kersting, K., van Otterlo, M., & De Raedt, L. (2004). Bellman goes relational. Proceedings of the Twenty-First International Conference on Machine Learning (ICML-2004) (pp. 465-472). Banff, Canada.
-
(2004)
Proceedings of the Twenty-First International Conference on Machine Learning (ICML-2004)
, pp. 465-472
-
-
Kersting, K.1
van Otterlo, M.2
De Raedt, L.3
-
23
-
-
0003932121
-
-
Doctoral dissertation, University of Rochester, New York, NY, USA
-
McCallum, A. (1996). Reinforcement learning with selective perception and hidden state. Doctoral dissertation, University of Rochester, New York, NY, USA.
-
(1996)
Reinforcement learning with selective perception and hidden state
-
-
McCallum, A.1
-
25
-
-
33646398129
-
Neural fitted Q iteration - First experiences with a data efficient neural reinforcement learning method
-
Porto, Portugal
-
Riedmiller, M. (2005). Neural fitted Q iteration - First experiences with a data efficient neural reinforcement learning method. Proceedings of the 16th European Conference on Machine Learning (pp. 317-328) Porto, Portugal.
-
(2005)
Proceedings of the 16th European Conference on Machine Learning
, pp. 317-328
-
-
Riedmiller, M.1
-
29
-
-
84898939480
-
Policy gradient methods for reinforcement learning with function approximation
-
MIT Press
-
Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (2000). Policy gradient methods for reinforcement learning with function approximation. Advances in Neural Information Processing Systems 12 (pp. 1057-1063). MIT Press.
-
(2000)
Advances in Neural Information Processing Systems 12
, pp. 1057-1063
-
-
Sutton, R.S.1
McAllester, D.2
Singh, S.3
Mansour, Y.4
-
30
-
-
0031636218
-
Tree based discretization for continuous state space reinforcement learning
-
Portland, OR, USA
-
Uther, W., & Veloso, M. (1998). Tree based discretization for continuous state space reinforcement learning. Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-96) (pp. 769-774) Portland, OR, USA.
-
(1998)
Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-96)
, pp. 769-774
-
-
Uther, W.1
Veloso, M.2
-
31
-
-
84880869367
-
First order decision diagrams for relational mdps
-
Hyderabad, India: AAAI press
-
Wang, C., Joshi, S., & Khardon, R. (2007). First order decision diagrams for relational mdps. Proceedings of the 20th International Joint Conference on Artificial Intelligence (pp. 1095-1100). Hyderabad, India: AAAI press.
-
(2007)
Proceedings of the 20th International Joint Conference on Artificial Intelligence
, pp. 1095-1100
-
-
Wang, C.1
Joshi, S.2
Khardon, R.3
-
32
-
-
1942451973
-
Model-based policy gradient reinforcement learning
-
Washington, DC, USA
-
Wang, X., & Dietterich, T. (2003). Model-based policy gradient reinforcement learning. Proceedings of the 20th International Conference on Machine Learning (pp. 776-783) Washington, DC, USA.
-
(2003)
Proceedings of the 20th International Conference on Machine Learning
, pp. 776-783
-
-
Wang, X.1
Dietterich, T.2
-
33
-
-
0000337576
-
Simple statistical gradient following algorithms for connectionist reinforcement learning
-
Williams, R. (1992). Simple statistical gradient following algorithms for connectionist reinforcement learning. Machine Learning, 8, 229-256.
-
(1992)
Machine Learning
, vol.8
, pp. 229-256
-
-
Williams, R.1
|