메뉴 건너뛰기




Volumn , Issue , 2008, Pages 456-463

Non-parametric policy gradients: A unified treatment of propositional and relational domains

Author keywords

[No Author keywords available]

Indexed keywords

REGRESSION ANALYSIS; ROBOT LEARNING; LEARNING SYSTEMS;

EID: 56449088242     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (61)

References (33)
  • 3
    • 56449099641 scopus 로고    scopus 로고
    • Technical Report CMU-RI-TR-03-45, Robotics Institute, Carnegie Mellon University, Pittsburg, Pa, USA
    • Bagnell, J., & Schneider, J. (2003). Policy search in reproducing kernel hilbert space (Technical Report CMU-RI-TR-03-45). Robotics Institute, Carnegie Mellon University, Pittsburg, Pa, USA.
    • (2003) Policy search in reproducing kernel hilbert space
    • Bagnell, J.1    Schneider, J.2
  • 6
    • 0032069371 scopus 로고    scopus 로고
    • Top-down induction of first order logical decision trees
    • Blockeel, H., & De Raedt, L. (1998). Top-down induction of first order logical decision trees. Artificial Intelligence, 101, 285-297.
    • (1998) Artificial Intelligence , vol.101 , pp. 285-297
    • Blockeel, H.1    De Raedt, L.2
  • 11
    • 4444312102 scopus 로고    scopus 로고
    • Integrating guidance into relational reinforcement learning
    • Driessens, K., & Dzeroski, S. (2004). Integrating guidance into relational reinforcement learning. Machine Learning, 57, 271-304.
    • (2004) Machine Learning , vol.57 , pp. 271-304
    • Driessens, K.1    Dzeroski, S.2
  • 13
    • 84948172455 scopus 로고    scopus 로고
    • Speeding up relational reinforcement learning through the use of an incremental first order decision tree learner
    • Freiburg, Germany
    • Driessens, K., Ramon, J., & Blockeel, H. (2001). Speeding up relational reinforcement learning through the use of an incremental first order decision tree learner. Proceedings of the 12th European Conference on Machine Learning (pp. 97-108), Freiburg, Germany.
    • (2001) Proceedings of the 12th European Conference on Machine Learning , pp. 97-108
    • Driessens, K.1    Ramon, J.2    Blockeel, H.3
  • 16
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29, 1189-1232.
    • (2001) Annals of Statistics , vol.29 , pp. 1189-1232
    • Friedman, J.1
  • 25
    • 33646398129 scopus 로고    scopus 로고
    • Neural fitted Q iteration - First experiences with a data efficient neural reinforcement learning method
    • Porto, Portugal
    • Riedmiller, M. (2005). Neural fitted Q iteration - First experiences with a data efficient neural reinforcement learning method. Proceedings of the 16th European Conference on Machine Learning (pp. 317-328) Porto, Portugal.
    • (2005) Proceedings of the 16th European Conference on Machine Learning , pp. 317-328
    • Riedmiller, M.1
  • 33
    • 0000337576 scopus 로고
    • Simple statistical gradient following algorithms for connectionist reinforcement learning
    • Williams, R. (1992). Simple statistical gradient following algorithms for connectionist reinforcement learning. Machine Learning, 8, 229-256.
    • (1992) Machine Learning , vol.8 , pp. 229-256
    • Williams, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.