메뉴 건너뛰기




Volumn 112, Issue , 2013, Pages 187-199

Separating the contributions of variability and parameter uncertainty in probability distributions

Author keywords

Aleatory uncertainty; Distribution parameter uncertainty; Epistemic uncertainty; Family of distributions; Interval data; Sensitivity analysis; Sparse data; Variability

Indexed keywords

PROBABILITY DISTRIBUTIONS; RANDOM VARIABLES; SENSITIVITY ANALYSIS;

EID: 84872741164     PISSN: 09518320     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ress.2012.11.024     Document Type: Article
Times cited : (126)

References (44)
  • 4
    • 0024668224 scopus 로고
    • Measures of structural safety under imperfect states of knowledge
    • A. Der Kiureghian Measures of structural safety under imperfect states of knowledge Journal of Structural Engineering 115 5 1989 1119 1140
    • (1989) Journal of Structural Engineering , vol.115 , Issue.5 , pp. 1119-1140
    • Der Kiureghian, A.1
  • 5
    • 50849144349 scopus 로고    scopus 로고
    • Analysis of structural reliability under parameter uncertainties
    • A. Der Kiureghian Analysis of structural reliability under parameter uncertainties Probabilistic Engineering Mechanics 23 4 2008 351 358
    • (2008) Probabilistic Engineering Mechanics , vol.23 , Issue.4 , pp. 351-358
    • Der Kiureghian, A.1
  • 6
    • 0035479472 scopus 로고    scopus 로고
    • Integration of computation and testing for reliability estimation
    • DOI 10.1016/S0951-8320(01)00008-4, PII S0951832001000084
    • R. Zhang, and S. Mahadevan Integration of computation and testing for reliability estimation Reliability Engineering & System Safety 74 1 2001 13 21 (Pubitemid 32842220)
    • (2001) Reliability Engineering and System Safety , vol.74 , Issue.1 , pp. 13-21
    • Zhang, R.1    Mahadevan, S.2
  • 8
    • 33845301204 scopus 로고    scopus 로고
    • Interval Monte Carlo as an alternative to second-order sampling for estimating ecological risk
    • DOI 10.1007/s11155-006-9019-0
    • J.G. Hajagos Interval Monte Carlo as an alternative to second-order sampling for estimating ecological risk Reliable Computing 13 1 2007 71 81 (Pubitemid 44877295)
    • (2007) Reliable Computing , vol.13 , Issue.1 , pp. 71-81
    • Hajagos, J.G.1
  • 9
    • 0033912562 scopus 로고    scopus 로고
    • Representing both first- and second-order uncertainties by Monte Carlo simulation for groups of patients
    • E.F. Halpern, M.C. Weinstein, M.G.M. Hunink, and G.S. Gazelle Representing both first-and second-order uncertainties by Monte Carlo simulation for groups of patients Medical Decision Making 20 3 2000 314 322 (Pubitemid 30470727)
    • (2000) Medical Decision Making , vol.20 , Issue.3 , pp. 314-322
    • Halpern, E.F.1    Weinstein, M.C.2    Hunink, M.G.M.3    Gazelle, G.S.4
  • 12
  • 13
    • 77949654989 scopus 로고    scopus 로고
    • On how to define, understand and describe risk
    • T. Aven On how to define, understand and describe risk Reliability Engineering & System Safety 95 6 2010 623 631
    • (2010) Reliability Engineering & System Safety , vol.95 , Issue.6 , pp. 623-631
    • Aven, T.1
  • 14
  • 15
    • 77949377220 scopus 로고    scopus 로고
    • Probability theory and consistent reasoning
    • D.W. North Probability theory and consistent reasoning Risk Analysis 30 3 2010 377 380
    • (2010) Risk Analysis , vol.30 , Issue.3 , pp. 377-380
    • North, D.W.1
  • 16
    • 80054120123 scopus 로고    scopus 로고
    • Uncertainties, precaution, and science focus on the state of knowledge and how it may change
    • D. Warner North Uncertainties, precaution, and science focus on the state of knowledge and how it may change Risk Analysis 31 10 2011 1526 1529
    • (2011) Risk Analysis , vol.31 , Issue.10 , pp. 1526-1529
    • Warner North, D.1
  • 17
    • 2642581898 scopus 로고    scopus 로고
    • An exploration of alternative approaches to the representation of uncertainty in model predictions
    • J.C. Helton, J.D. Johnson, and W.L. Oberkampf An exploration of alternative approaches to the representation of uncertainty in model predictions Reliability Engineering & System Safety 85 1 2004 39 71
    • (2004) Reliability Engineering & System Safety , vol.85 , Issue.1 , pp. 39-71
    • Helton, J.C.1    Johnson, J.D.2    Oberkampf, W.L.3
  • 18
    • 84868240884 scopus 로고    scopus 로고
    • Dempster-Shafer theory in the analysis and design of uncertain engineering systems
    • S.S. Rao, and K.K. Annamdas Dempster-Shafer theory in the analysis and design of uncertain engineering systems Product Research 2009 135 160
    • (2009) Product Research , pp. 135-160
    • Rao, S.S.1    Annamdas, K.K.2
  • 19
    • 4344686894 scopus 로고    scopus 로고
    • An approximation approach for uncertainty quantification using evidence theory
    • H.R. Bae, R.V. Grandhi, and R.A. Canfield An approximation approach for uncertainty quantification using evidence theory Reliability Engineering & System Safety 86 3 2004 215 225
    • (2004) Reliability Engineering & System Safety , vol.86 , Issue.3 , pp. 215-225
    • Bae, H.R.1    Grandhi, R.V.2    Canfield, R.A.3
  • 23
    • 79955521321 scopus 로고    scopus 로고
    • Likelihood-based representation of epistemic uncertainty due to sparse point data and/or interval data
    • S. Sankararaman, and S. Mahadevan Likelihood-based representation of epistemic uncertainty due to sparse point data and/or interval data Reliability Engineering & System Safety 96 7 2011 814 824
    • (2011) Reliability Engineering & System Safety , vol.96 , Issue.7 , pp. 814-824
    • Sankararaman, S.1    Mahadevan, S.2
  • 24
    • 79959596569 scopus 로고    scopus 로고
    • Model validation under epistemic uncertainty
    • (Quantification of Margins and Uncertainties)
    • S. Sankararaman, and S. Mahadevan Model validation under epistemic uncertainty Reliability Engineering & System Safety 96 9 2011 1232 1241 (Quantification of Margins and Uncertainties)
    • (2011) Reliability Engineering & System Safety , vol.96 , Issue.9 , pp. 1232-1241
    • Sankararaman, S.1    Mahadevan, S.2
  • 25
    • 84868256868 scopus 로고    scopus 로고
    • Model parameter estimation with imprecise and unpaired data
    • Part of the Special Issue containing selected papers from the 3rd Inverse Problems, Design, and Optimization (IPDO) symposium conducted in João Pessoa, Brazil during 25-27 August 2010
    • Sankararaman S, Mahadevan S. Model parameter estimation with imprecise and unpaired data. Inverse Problems in Science and Engineering. Vol. 20, No. 7, 2012, 10.1080/17415977.2012.675505, part of the Special Issue containing selected papers from the 3rd Inverse Problems, Design, and Optimization (IPDO) symposium conducted in João Pessoa, Brazil during 25-27 August 2010.
    • (2012) Inverse Problems in Science and Engineering , vol.20 , Issue.7
    • Sankararaman, S.1    Mahadevan, S.2
  • 28
    • 79959620029 scopus 로고    scopus 로고
    • Quantification of margins and uncertainties example analyses from reactor safety and radioactive waste disposal involving the separation of aleatory and epistemic uncertainty
    • J.C. Helton, J.D. Johnson, and C.J. Sallaberry Quantification of margins and uncertainties example analyses from reactor safety and radioactive waste disposal involving the separation of aleatory and epistemic uncertainty Reliability Engineering & System Safety 96 9 2011 1014 1033
    • (2011) Reliability Engineering & System Safety , vol.96 , Issue.9 , pp. 1014-1033
    • Helton, J.C.1    Johnson, J.D.2    Sallaberry, C.J.3
  • 32
    • 0007221106 scopus 로고
    • Inference for a Bernoulli process (a Bayesian view)
    • D.V. Lindley, and L.D. Phillips Inference for a Bernoulli process (a Bayesian view) The American Statistician 30 3 1976 112 119
    • (1976) The American Statistician , vol.30 , Issue.3 , pp. 112-119
    • Lindley, D.V.1    Phillips, L.D.2
  • 33
    • 0036837919 scopus 로고    scopus 로고
    • Implementing the Bayesian paradigm in risk analysis
    • DOI 10.1016/S0951-8320(02)00161-8, PII S0951832002001618
    • T. Aven, and J.T. Kvaløy Implementing the Bayesian paradigm in risk analysis Reliability Engineering & System Safety 78 2 2002 195 201 (Pubitemid 35167614)
    • (2002) Reliability Engineering and System Safety , vol.78 , Issue.2 , pp. 195-201
    • Aven, T.1    Kvaloy, J.T.2
  • 35
    • 28244498648 scopus 로고    scopus 로고
    • Reliability-based design with the mixture of random and interval variables
    • DOI 10.1115/1.1992510
    • X. Du, A. Sudjianto, and B. Huang Reliability-based design with the mixture of random and interval variables Journal of Mechanical Design 127 6 2005 1068 1076 (Pubitemid 41709564)
    • (2005) Journal of Mechanical Design, Transactions of the ASME , vol.127 , Issue.6 , pp. 1068-1076
    • Du, X.1    Sudjianto, A.2    Huang, B.3
  • 37
    • 0007982309 scopus 로고
    • Kendall's advanced theory of statistics
    • Halsted Press
    • O'Hagan A, Forster J. Kendall's advanced theory of statistics. Bayesian inference, vol. 2B. Halsted Press; 1994.
    • (1994) Bayesian Inference , vol.2 B
    • O'Hagan, A.1    Forster, J.2
  • 39
    • 0030289763 scopus 로고    scopus 로고
    • Different methods are needed to propagate ignorance and variability
    • DOI 10.1016/S0951-8320(96)00071-3, PII S0951832096000713
    • S. Ferson, and L.R. Ginzburg Different methods are needed to propagate ignorance and variability Reliability Engineering & System Safety 54 2 1996 133 144 (Pubitemid 126365918)
    • (1996) Reliability Engineering and System Safety , vol.54 , Issue.2-3 , pp. 133-144
    • Ferson, S.1    Ginzburg, L.R.2
  • 41
    • 0028746131 scopus 로고
    • The probability integral transform and related results
    • J.E. Angus The probability integral transform and related results SIAM Review 1994 652 654
    • (1994) SIAM Review , pp. 652-654
    • Angus, J.E.1
  • 43
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • W.K. Hastings Monte Carlo sampling methods using Markov chains and their applications Biometrika 57 1 1970 97 109
    • (1970) Biometrika , vol.57 , Issue.1 , pp. 97-109
    • Hastings, W.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.