-
1
-
-
0021439912
-
On the appearance of the fractional derivative in the behavior of real materials
-
Bagley R.L., Torvik P.J. On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 1984, 51:294-298.
-
(1984)
J. Appl. Mech.
, vol.51
, pp. 294-298
-
-
Bagley, R.L.1
Torvik, P.J.2
-
3
-
-
79551645703
-
The solution of high-order nonlinear ordinary differential Eqs
-
Dascioglu J., Yaslan H. The solution of high-order nonlinear ordinary differential Eqs. Appl. Math. Comput. 2011, 217:5658-5666..
-
(2011)
Appl. Math. Comput.
, vol.217
-
-
Dascioglu, J.1
Yaslan, H.2
-
4
-
-
84872614490
-
Existance and uniqueness of solutions for a system of fractional differential equations
-
Zhou Y. Existance and uniqueness of solutions for a system of fractional differential equations. An Int. J. Theory Appl. 2009, 12(2).
-
(2009)
An Int. J. Theory Appl.
, vol.12
, Issue.2
-
-
Zhou, Y.1
-
5
-
-
77950188013
-
Existence and uniqueness of initial value problems for non-linear fractional differential equations
-
Deng A., Ma L. Existence and uniqueness of initial value problems for non-linear fractional differential equations. Appl. Math. Lett. 2010, 23:676-680.
-
(2010)
Appl. Math. Lett.
, vol.23
, pp. 676-680
-
-
Deng, A.1
Ma, L.2
-
6
-
-
0000092673
-
Variation iteration method-a kind of non-linear analytical technique: some examples
-
He J.H. Variation iteration method-a kind of non-linear analytical technique: some examples. Int. J. Non-Linear Mech. 1999, 34:699-708.
-
(1999)
Int. J. Non-Linear Mech.
, vol.34
, pp. 699-708
-
-
He, J.H.1
-
7
-
-
28044468843
-
Finite difference approximations for two-sided space-fractional partial differential equations
-
Meerschaert M.M., Tadjeran C. Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 2006, 56:80-90.
-
(2006)
Appl. Numer. Math.
, vol.56
, pp. 80-90
-
-
Meerschaert, M.M.1
Tadjeran, C.2
-
8
-
-
79251601340
-
Numerical solution of two-sided space-fractional wave equation using finite difference method
-
Sweilam N.H., Khader M.M., Nagy A.M. Numerical solution of two-sided space-fractional wave equation using finite difference method. J. Comput. Appl. Math. 2011, 235:2832-2841.
-
(2011)
J. Comput. Appl. Math.
, vol.235
, pp. 2832-2841
-
-
Sweilam, N.H.1
Khader, M.M.2
Nagy, A.M.3
-
9
-
-
85162538951
-
Crank-Nicolson finite difference method for solving time-fractional diffusion equation
-
Sweilam N.H., Khader M.M., Mahdy A.M.S. Crank-Nicolson finite difference method for solving time-fractional diffusion equation. J. Fract. Calc. Appl. 2012, 2(2):1-9.
-
(2012)
J. Fract. Calc. Appl.
, vol.2
, Issue.2
, pp. 1-9
-
-
Sweilam, N.H.1
Khader, M.M.2
Mahdy, A.M.S.3
-
10
-
-
84872599320
-
On the stability analysis of weighted average finite difference methods for fractional wave equation
-
Sweilam N.H., Khader M.M., Adel M. On the stability analysis of weighted average finite difference methods for fractional wave equation. Fract. Differ. Calc. 2012, 2(1):17-29.
-
(2012)
Fract. Differ. Calc.
, vol.2
, Issue.1
, pp. 17-29
-
-
Sweilam, N.H.1
Khader, M.M.2
Adel, M.3
-
11
-
-
84867762995
-
Numerical studies for fractional-order Logistic differential equation with two different delays
-
Sweilam N.H., Khader M.M., Mahdy A.M.S. Numerical studies for fractional-order Logistic differential equation with two different delays. J. Appl. Math. 2012, 2012:1-14.
-
(2012)
J. Appl. Math.
, vol.2012
, pp. 1-14
-
-
Sweilam, N.H.1
Khader, M.M.2
Mahdy, A.M.S.3
-
12
-
-
43949121726
-
The approximate and exact solutions of the space-and time-fractional Burger's equations with initial conditions by VIM
-
Inc M. The approximate and exact solutions of the space-and time-fractional Burger's equations with initial conditions by VIM. J. Math. Anal. Appl. 2008, 345:476-484.
-
(2008)
J. Math. Anal. Appl.
, vol.345
, pp. 476-484
-
-
Inc, M.1
-
13
-
-
70350574745
-
Exact solutions of some coupled nonlinear partial differential equations using the homotopy perturbation method
-
Sweilam N.H., Khader M.M. Exact solutions of some coupled nonlinear partial differential equations using the homotopy perturbation method. Comput. Math. Appl. 2009, 58:2134-2141.
-
(2009)
Comput. Math. Appl.
, vol.58
, pp. 2134-2141
-
-
Sweilam, N.H.1
Khader, M.M.2
-
15
-
-
78651444144
-
On the numerical solutions for the fractional diffusion equation
-
Khader M.M. On the numerical solutions for the fractional diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 2011, 16:2535-2542.
-
(2011)
Commun. Nonlinear Sci. Numer. Simul.
, vol.16
, pp. 2535-2542
-
-
Khader, M.M.1
-
16
-
-
84879413416
-
-
A numerical technique for solving fractional variational problems, Math. Method Appl. Sci.
-
M.M. Khader, A.S. Hendy, A numerical technique for solving fractional variational problems, Math. Method Appl. Sci. (2012), http://dx.doi.org/10.1002/mma.2681.
-
(2012)
-
-
Khader, M.M.1
Hendy, A.S.2
-
17
-
-
84865357031
-
Introducing an efficient modification of the variational iteration method by using Chebyshev polynomials
-
Khader M.M. Introducing an efficient modification of the variational iteration method by using Chebyshev polynomials. Appl. Appl. Math.: Int. J. 2012, 7(1):283-299.
-
(2012)
Appl. Appl. Math.: Int. J.
, vol.7
, Issue.1
, pp. 283-299
-
-
Khader, M.M.1
-
18
-
-
84865348555
-
Introducing an efficient modification of the homotopy perturbation method by using Chebyshev polynomials
-
Khader M.M. Introducing an efficient modification of the homotopy perturbation method by using Chebyshev polynomials. Arab J. Math. Sci. 2012, 18:61-71.
-
(2012)
Arab J. Math. Sci.
, vol.18
, pp. 61-71
-
-
Khader, M.M.1
-
19
-
-
84857583048
-
The approximate and exact solutions of the fractional-order delay differential equations using Legendre pseudospectral method
-
Khader M.M., Hendy A.S. The approximate and exact solutions of the fractional-order delay differential equations using Legendre pseudospectral method. Int. J. Pure Appl. Math. 2012, 74(3):287-297.
-
(2012)
Int. J. Pure Appl. Math.
, vol.74
, Issue.3
, pp. 287-297
-
-
Khader, M.M.1
Hendy, A.S.2
-
20
-
-
33646161468
-
Numerical solution of fractional integro-differential equations by collocation method
-
Rawashdeh E.A. Numerical solution of fractional integro-differential equations by collocation method. Appl. Math. Comput. 2006, 176:1-6.
-
(2006)
Appl. Math. Comput.
, vol.176
, pp. 1-6
-
-
Rawashdeh, E.A.1
-
21
-
-
79960376707
-
A Chebyshev pseudo-spectral method for solving fractional integro-differential equations
-
Sweilam N.H., Khader M.M. A Chebyshev pseudo-spectral method for solving fractional integro-differential equations. ANZIAM 2010, 51:464-475.
-
(2010)
ANZIAM
, vol.51
, pp. 464-475
-
-
Sweilam, N.H.1
Khader, M.M.2
-
22
-
-
84865348555
-
Introducing an efficient modification of the homotopy perturbation method by using Chebyshev polynomials
-
Khader M.M. Introducing an efficient modification of the homotopy perturbation method by using Chebyshev polynomials. Arab J. Math. Sci. 2012, 18:61-71.
-
(2012)
Arab J. Math. Sci.
, vol.18
, pp. 61-71
-
-
Khader, M.M.1
-
23
-
-
84865355846
-
An efficient numerical method for solving the fractional diffusion equation
-
Khader M.M., Sweilam N.H., Mahdy A.M.S. An efficient numerical method for solving the fractional diffusion equation. J. Appl. Math. Bioinform. 2011, 1:1-12.
-
(2011)
J. Appl. Math. Bioinform.
, vol.1
, pp. 1-12
-
-
Khader, M.M.1
Sweilam, N.H.2
Mahdy, A.M.S.3
-
24
-
-
35349007940
-
Numerical studies for a multi-order fractional differential equation
-
Sweilam N.H., Khader M.M., Al-Bar R.F. Numerical studies for a multi-order fractional differential equation. Phys. Lett. A 2007, 371:26-33.
-
(2007)
Phys. Lett. A
, vol.371
, pp. 26-33
-
-
Sweilam, N.H.1
Khader, M.M.2
Al-Bar, R.F.3
-
25
-
-
63049114686
-
-
Springer, Verlag, New York
-
Canuto C., Hussaini M.Y., Quarteroni A., Zang T.A. Spectral Methods 2006, Springer, Verlag, New York.
-
(2006)
Spectral Methods
-
-
Canuto, C.1
Hussaini, M.Y.2
Quarteroni, A.3
Zang, T.A.4
-
27
-
-
0041862628
-
Chebyshev collocation method for solving linear differential equations
-
Timucin I. Chebyshev collocation method for solving linear differential equations. Math. Comput. Appl. 2004, 9:107-115.
-
(2004)
Math. Comput. Appl.
, vol.9
, pp. 107-115
-
-
Timucin, I.1
-
28
-
-
84862785348
-
Numerical solution of nonlinear multi-order fractional differential equations by implementation of the operational matrix of fractional derivative
-
Khader M.M. Numerical solution of nonlinear multi-order fractional differential equations by implementation of the operational matrix of fractional derivative. Studies in Nonlinear Sci. 2011, 2(1):5-12.
-
(2011)
Studies in Nonlinear Sci.
, vol.2
, Issue.1
, pp. 5-12
-
-
Khader, M.M.1
-
29
-
-
79960555480
-
-
Efficient Chebyshev spectral methods for solving
-
E.H. Doha, A.H. Bahrawy, S.S. Ezz-Eldien, Efficient Chebyshev spectral methods for solving, 35 (2011) 5662-5672.
-
(2011)
, vol.35
, pp. 5662-5672
-
-
Doha, E.H.1
Bahrawy, A.H.2
Ezz-Eldien, S.S.3
-
30
-
-
84861893481
-
A new Jacobi operational matrix: an application for solving fractional differential equations
-
Doha E.H., Bahrawy A.H., Ezz-Eldien S.S. A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Model. 2012, 36(10):4931-4943.
-
(2012)
Appl. Math. Model.
, vol.36
, Issue.10
, pp. 4931-4943
-
-
Doha, E.H.1
Bahrawy, A.H.2
Ezz-Eldien, S.S.3
-
31
-
-
84872595563
-
-
An integral operational matrix based on Jacobi polynomials for solving fractional-order differential equations, Applied Mathematical Modelling
-
S. Kazem, An integral operational matrix based on Jacobi polynomials for solving fractional-order differential equations, Applied Mathematical Modelling (2012).
-
(2012)
-
-
Kazem, S.1
-
36
-
-
84855195071
-
A collocation approach to solving the model of pollution for a system of lakes
-
Yüzba S., Sahin N., Sezer M. A collocation approach to solving the model of pollution for a system of lakes. Math. Comput. Model. 2012, 55:330-341.
-
(2012)
Math. Comput. Model.
, vol.55
, pp. 330-341
-
-
Yüzba, S.1
Sahin, N.2
Sezer, M.3
-
37
-
-
0034270722
-
Vibration and stability analysis of non-uniform Timoshenko beams under axial and distributed tangential loads
-
Esmailsdeh E., Ohadi A.R. Vibration and stability analysis of non-uniform Timoshenko beams under axial and distributed tangential loads. J. Sound Vib. 2000, 236:443-456.
-
(2000)
J. Sound Vib.
, vol.236
, pp. 443-456
-
-
Esmailsdeh, E.1
Ohadi, A.R.2
-
38
-
-
0001642259
-
Analytical predictions of chaos in a non-linear rod
-
Luo A.C.J., Han R.P.S. Analytical predictions of chaos in a non-linear rod. J. Sound Vib. 1999, 227:523-544.
-
(1999)
J. Sound Vib.
, vol.227
, pp. 523-544
-
-
Luo, A.C.J.1
Han, R.P.S.2
-
39
-
-
0037774723
-
Chebyshev polynomial solutions of systems of high-order linear differential equations with variable coefficients
-
Akyuz A., Sezer M. Chebyshev polynomial solutions of systems of high-order linear differential equations with variable coefficients. J. Appl. Mech. 2003, 144:237-247.
-
(2003)
J. Appl. Mech.
, vol.144
, pp. 237-247
-
-
Akyuz, A.1
Sezer, M.2
-
40
-
-
12244291039
-
Numerical solutions for systems of fractional differential equations by the decomposition method
-
Momani A.S., Al-Khaled K. Numerical solutions for systems of fractional differential equations by the decomposition method. Appl. Math. Comput. 2005, 162:1351-1365.
-
(2005)
Appl. Math. Comput.
, vol.162
, pp. 1351-1365
-
-
Momani, A.S.1
Al-Khaled, K.2
-
41
-
-
0015484437
-
Comparing numerical methods for ordinary differential equations
-
Hull T.E., Enright W.H., Fellen B.M., Sedgwick A.E. Comparing numerical methods for ordinary differential equations. SIAM J. Numer. Anal. 1972, 9:603.
-
(1972)
SIAM J. Numer. Anal.
, vol.9
, pp. 603
-
-
Hull, T.E.1
Enright, W.H.2
Fellen, B.M.3
Sedgwick, A.E.4
|