-
1
-
-
0018985316
-
A faster algorithm for computing string edit distance
-
Masek W, Patterson M. A faster algorithm for computing string edit distance. J Comput Syst Sci 1980, 20:18-31.
-
(1980)
J Comput Syst Sci
, vol.20
, pp. 18-31
-
-
Masek, W.1
Patterson, M.2
-
2
-
-
0000390142
-
Binary codes capable of correcting deletions, insertions, and reversals
-
Levenshtein VI. Binary codes capable of correcting deletions, insertions, and reversals. Dok Akad Nauk SSSR 1966, 163:845-848.
-
(1966)
Dok Akad Nauk SSSR
, vol.163
, pp. 845-848
-
-
Levenshtein, V.I.1
-
3
-
-
84943817322
-
Error-detecting and error-correcting codes
-
Hamming RW. Error-detecting and error-correcting codes. Bell Syst Tech J 1950, 29:147-160.
-
(1950)
Bell Syst Tech J
, vol.29
, pp. 147-160
-
-
Hamming, R.W.1
-
4
-
-
84873185789
-
Time wraps, String edits, and Macromulecules: The Theory and Practice of Sequence Comparison
-
MA: Addision-Wesley Publishing Co.
-
Sankoff D, Kruskal J. Time wraps, String edits, and Macromulecules: The Theory and Practice of Sequence Comparison. Boston, MA: Addision-Wesley Publishing Co.; 1983.
-
(1983)
Boston
-
-
Sankoff, D.1
Kruskal, J.2
-
5
-
-
0014757386
-
A general method applicable to the search for similarties in the amino acid sequence of two proteins
-
Needleman S, Wunsch C. A general method applicable to the search for similarties in the amino acid sequence of two proteins. J Mol Biology 1970, 48:443-453.
-
(1970)
J Mol Biology
, vol.48
, pp. 443-453
-
-
Needleman, S.1
Wunsch, C.2
-
6
-
-
0019887799
-
Identification of common molecular subsequences
-
Smith T, Waterman M. Identification of common molecular subsequences. J Mol Biol, 147:195-197, 1981.
-
(1981)
J Mol Biol
, vol.147
, pp. 195-197
-
-
Smith, T.1
Waterman, M.2
-
7
-
-
0004089638
-
Of Urfs and Orfs: A Primer on How to Analyse Derived Amino Acid Sequences
-
CA: University Science Books
-
Doolittle R. Of Urfs and Orfs: A Primer on How to Analyse Derived Amino Acid Sequences. Mill Valley, CA: University Science Books; 1986.
-
(1986)
Mill Valley
-
-
Doolittle, R.1
-
8
-
-
0004137004
-
Algorithms on Strings, Trees, and Sequences
-
New York, NY: Cambridge University Press
-
Gusfield D. Algorithms on Strings, Trees, and Sequences. New York, NY: Cambridge University Press; 1997.
-
(1997)
-
-
Gusfield, D.1
-
9
-
-
0003653039
-
Introduction to Modern Information Retrieval
-
New York, NY: McGraw-Hill
-
Salton G, McGill MJ. Introduction to Modern Information Retrieval. New York, NY: McGraw-Hill; 1986.
-
(1986)
-
-
Salton, G.1
McGill, M.J.2
-
10
-
-
38949156579
-
Linear-time computation of similarity measures for sequential data
-
Rieck K, Laskov P. Linear-time computation of similarity measures for sequential data. J Mach Learn Res 2008, 9:23-48.
-
(2008)
J Mach Learn Res
, vol.9
, pp. 23-48
-
-
Rieck, K.1
Laskov, P.2
-
11
-
-
33847314004
-
Large scale learning with string kernels
-
Bottou L, Chapelle O, DeCoste D, Weston J, eds. Cambridge, MA: MIT Press
-
Sonnenburg S, Rätsch G, Rieck K. Large scale learning with string kernels. In: Bottou L, Chapelle O, DeCoste D, Weston J, eds. Large Scale Kernel Machines. Cambridge, MA: MIT Press; 2007, 73-103.
-
(2007)
Large Scale Kernel Machines
, pp. 73-103
-
-
Sonnenburg, S.1
Rätsch, G.2
Rieck, K.3
-
12
-
-
0016572913
-
A vector space model for automatic indexing
-
Salton G, Wong A, Yang C. A vector space model for automatic indexing. Commun ACM 1975, 18:613-620.
-
(1975)
Commun ACM
, vol.18
, pp. 613-620
-
-
Salton, G.1
Wong, A.2
Yang, C.3
-
13
-
-
0038167128
-
Learning to Classify Text Using Support Vector Machines
-
Boston, MA: Kluwer
-
Joachims T. Learning to Classify Text Using Support Vector Machines. Boston, MA: Kluwer; 2002.
-
(2002)
-
-
Joachims, T.1
-
14
-
-
0017952955
-
N-gram statistics for natural language understanding and text processing
-
Suen C. N-gram statistics for natural language understanding and text processing. IEEE Trans. Pattern Anal Mach Intell 1979, 1:164-172.
-
(1979)
IEEE Trans. Pattern Anal Mach Intell
, vol.1
, pp. 164-172
-
-
Suen, C.1
-
15
-
-
0028911698
-
Gauging similarity with n-grams: language-independent categorization of text
-
Damashek M. Gauging similarity with n-grams: language-independent categorization of text. Science 1995, 267:843-848.
-
(1995)
Science
, vol.267
, pp. 843-848
-
-
Damashek, M.1
-
16
-
-
0032405150
-
Applications of n-grams in textual information systems
-
Robertson A, Willett P. Applications of n-grams in textual information systems. J Doc 1998, 58:48-69.
-
(1998)
J Doc
, vol.58
, pp. 48-69
-
-
Robertson, A.1
Willett, P.2
-
17
-
-
0036358995
-
The spectrum kernel: a string kernel for SVM protein classification
-
Altman RB, Dunker AK, Hunter L, Lauderdale K, Klein TE, eds., Lihue, HI
-
Leslie C, Eskin E, Noble W. The spectrum kernel: a string kernel for SVM protein classification. In: Altman RB, Dunker AK, Hunter L, Lauderdale K, Klein TE, eds. Proc. Pacific Symposium Biocomputing, Lihue, HI; 2002, 564-575.
-
(2002)
Proc. Pacific Symposium Biocomputing
, pp. 564-575
-
-
Leslie, C.1
Eskin, E.2
Noble, W.3
-
18
-
-
85084160262
-
Using text categorization techniques for intrusion detection
-
Liao Y, Vemuri VR. Using text categorization techniques for intrusion detection. In: Proc. of USENIX Security Symposium. 2002, 51-59.
-
(2002)
Proc. of USENIX Security Symposium.
, pp. 51-59
-
-
Liao, Y.1
Vemuri, V.R.2
-
19
-
-
0032313923
-
Intrusion detection using sequences of system calls
-
Hofmeyr S, Forrest S, Somayaji A. Intrusion detection using sequences of system calls. J Comput Secur 1998, 6:151-180.
-
(1998)
J Comput Secur
, vol.6
, pp. 151-180
-
-
Hofmeyr, S.1
Forrest, S.2
Somayaji, A.3
-
20
-
-
33846910249
-
Language models for detection of unknown attacks in network traffic
-
Rieck K, Laskov P. Language models for detection of unknown attacks in network traffic. J Comput Virol 2007, 2:243-256.
-
(2007)
J Comput Virol
, vol.2
, pp. 243-256
-
-
Rieck, K.1
Laskov, P.2
-
21
-
-
0004094721
-
Learning with Kernels
-
Cambridge, MA: MIT Press
-
Schölkopf B, Smola A. Learning with Kernels. Cambridge, MA: MIT Press; 2002.
-
(2002)
-
-
Schölkopf, B.1
Smola, A.2
-
22
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
Müller K-R, Mika S, Rätsch G, Tsuda K, Schölkopf B. An introduction to kernel-based learning algorithms. IEEE Neural Netw 2001, 12:181-201.
-
(2001)
IEEE Neural Netw
, vol.12
, pp. 181-201
-
-
Müller, K.-R.1
Mika, S.2
Rätsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
23
-
-
0002714543
-
Making large-scale SVM learning practical
-
Schölkopf B, Burges C, Smola A, eds. MA: MIT Press
-
Joachims T. Making large-scale SVM learning practical. In: Schölkopf B, Burges C, Smola A, eds. Advances in Kernel Methods-Support Vector Learning. Cambridge, MA: MIT Press; 1999, 169-184.
-
(1999)
Advances in Kernel Methods-Support Vector Learning. Cambridge
, pp. 169-184
-
-
Joachims, T.1
-
24
-
-
0002531715
-
Dynamic alignment kernels
-
Smola A, Bartlett P, Schölkopf B, Schuurmans D, eds. MA: MIT Press
-
Watkins C. Dynamic alignment kernels. In: Smola A, Bartlett P, Schölkopf B, Schuurmans D, eds. Advances in Large Margin Classifiers. Cambridge, MA: MIT Press; 2000, 39-50.
-
(2000)
Advances in Large Margin Classifiers. Cambridge
, pp. 39-50
-
-
Watkins, C.1
-
25
-
-
0041965869
-
Text classification using string kernels
-
Lodhi H, Saunders C, Shawe-Taylor J, Cristianini N, Watkins C. Text classification using string kernels. J Mach Learn Res 2002, 2:419-444.
-
(2002)
J Mach Learn Res
, vol.2
, pp. 419-444
-
-
Lodhi, H.1
Saunders, C.2
Shawe-Taylor, J.3
Cristianini, N.4
Watkins, C.5
-
26
-
-
25144516978
-
Mismatch string kernel for discriminative protein classification
-
Leslie C, Eskin E, Cohen A, Weston J, Noble W. Mismatch string kernel for discriminative protein classification. Bioinformatics 2003, 1:1-10.
-
(2003)
Bioinformatics
, vol.1
, pp. 1-10
-
-
Leslie, C.1
Eskin, E.2
Cohen, A.3
Weston, J.4
Noble, W.5
-
27
-
-
84883575579
-
Fast string kernels using inexact matching for protein sequences
-
Leslie C, Kuang R. Fast string kernels using inexact matching for protein sequences. J Mach Learn Res 2004, 5:1435-1455.
-
(2004)
J Mach Learn Res
, vol.5
, pp. 1435-1455
-
-
Leslie, C.1
Kuang, R.2
-
28
-
-
33749236901
-
Fast kernels for string and tree matching
-
Tsuda K, Schölkopf B, Vert J, eds. Cambridge, MA: MIT Press
-
Vishwanathan S, Smola A. Fast kernels for string and tree matching. In: Tsuda K, Schölkopf B, Vert J, eds. Kernels and Bioinformatics. Cambridge, MA: MIT Press; 2004, 113-130.
-
(2004)
Kernels and Bioinformatics
, pp. 113-130
-
-
Vishwanathan, S.1
Smola, A.2
-
29
-
-
0028516811
-
Sublinear approximate string matching and biological applications
-
Chang WI, Lawler EL. Sublinear approximate string matching and biological applications. Algorithmica 1994, 12:327-344.
-
(1994)
Algorithmica
, vol.12
, pp. 327-344
-
-
Chang, W.I.1
Lawler, E.L.2
-
30
-
-
0004019973
-
Convolution kernels on discrete structures
-
UC Santa Cruz, CA; July
-
Haussler D. Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10. UC Santa Cruz, CA; July 1999.
-
(1999)
Technical Report UCSC-CRL-99-10
-
-
Haussler, D.1
-
31
-
-
0033670134
-
Engineering support vector machine kernels that recognize translation initiation sites in DNA
-
Zien A, Rätsch G, Mika S, Schölkopf B, Lengauer T, Müller K-R. Engineering support vector machine kernels that recognize translation initiation sites in DNA. BioInformatics 2000, 16:799-807.
-
(2000)
BioInformatics
, vol.16
, pp. 799-807
-
-
Zien, A.1
Rätsch, G.2
Mika, S.3
Schölkopf, B.4
Lengauer, T.5
Müller, K.-R.6
-
32
-
-
0034048878
-
A discriminative framework for detecting remote protein homologies
-
2000
-
Jaakkola T, Diekhans M, Haussler D. A discriminative framework for detecting remote protein homologies. J Comput Biol 2000, 7:95-114, 2000.
-
(2000)
J Comput Biol
, vol.7
, pp. 95-114
-
-
Jaakkola, T.1
Diekhans, M.2
Haussler, D.3
-
33
-
-
0036780246
-
A new discriminative kernel from probabilistic models
-
Tsuda K, Kawanabe M, Rätsch G, Sonnenburg S, Müller K. A new discriminative kernel from probabilistic models. Neural Comput 2002, 14:2397-2414.
-
(2002)
Neural Comput
, vol.14
, pp. 2397-2414
-
-
Tsuda, K.1
Kawanabe, M.2
Rätsch, G.3
Sonnenburg, S.4
Müller, K.5
-
34
-
-
33747871991
-
ARTS: accurate recognition of transcription starts in human
-
Sonnenburg S, Zien A, Rätsch G. ARTS: accurate recognition of transcription starts in human. Bioinformatics 2006, 22:e472-e480.
-
(2006)
Bioinformatics
, vol.22
-
-
Sonnenburg, S.1
Zien, A.2
Rätsch, G.3
-
36
-
-
34547535371
-
A kernel for time series based on global alignments
-
Kuh A, Huang Y-F, eds. Honolulu, HI
-
Cuturi M, Vert J-P, Matsui T. A kernel for time series based on global alignments. In: Kuh A, Huang Y-F, eds. Proc. of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), Honolulu, HI; 2007.
-
(2007)
Proc. of the International Conference on Acoustics, Speech and Signal Processing (ICASSP)
-
-
Cuturi, M.1
Vert, J.-P.2
Matsui, T.3
-
39
-
-
84898995383
-
Convolution kernel for natural language
-
Becker S, Thrun S, Obermayer K, eds. MA: MIT Press
-
Collins M, Duffy N. Convolution kernel for natural language. In: Becker S, Thrun S, Obermayer K, eds. Advances in Neural Information Proccessing Systems (NIPS) Vancouver, BC. Cambridge, MA: MIT Press. Vol. 16. 2002, 625-632.
-
(2002)
Advances in Neural Information Proccessing Systems (NIPS) Vancouver, BC. Cambridge
, vol.16
, pp. 625-632
-
-
Collins, M.1
Duffy, N.2
-
40
-
-
77949506401
-
Approximate tree kernels
-
Rieck K, Krueger T, Brefeld U, Müller K-R. Approximate tree kernels. J Mach Learn Res 2010, 11:555-580.
-
(2010)
J Mach Learn Res
, vol.11
, pp. 555-580
-
-
Rieck, K.1
Krueger, T.2
Brefeld, U.3
Müller, K.-R.4
-
41
-
-
4444288656
-
Kernels and distances for structured data
-
Gärtner T, Lloyd J, Flach P. Kernels and distances for structured data. Mach Learn 2004, 57:205-232.
-
(2004)
Mach Learn
, vol.57
, pp. 205-232
-
-
Gärtner, T.1
Lloyd, J.2
Flach, P.3
-
42
-
-
77951950367
-
Graph kernels
-
Vishwanathan S, Schraudoplh N, Kondor R, Borgwardt K. Graph kernels. J Mach Learn Res. 2010, 11:1201-1242.
-
(2010)
J Mach Learn Res.
, vol.11
, pp. 1201-1242
-
-
Vishwanathan, S.1
Schraudoplh, N.2
Kondor, R.3
Borgwardt, K.4
|