메뉴 건너뛰기




Volumn 6, Issue 1, 2013, Pages 29-37

A System of Insolvency Prediction for industrial companies using a financial alternative model with neural networks

Author keywords

Bankruptcy prediction; Credit risk; Financials ratios; Neural networks

Indexed keywords

BANKRUPTCY PREDICTION; CREDIT RISKS; FINANCIAL INFORMATION; FINANCIAL RATIOS; FINANCIAL YEAR; FINANCIALS RATIOS; HIDDEN LAYERS; INDUSTRIAL COMPANIES; INPUT DATAS; INPUT SET; PREDICTIVE POWER; TRAINING SETS;

EID: 84872423875     PISSN: 18756891     EISSN: 18756883     Source Type: Journal    
DOI: 10.1080/18756891.2013.754167     Document Type: Article
Times cited : (27)

References (34)
  • 2
    • 43949151078 scopus 로고
    • Corporate distress diagnosis: comparisons using linear discriminant analysis and network
    • Altman, E., Marco, G. and Varetto, F. 1994. Corporate distress diagnosis: comparisons using linear discriminant analysis and network. Journal of banking and finance, 18(3): 505-529.
    • (1994) Journal of banking and finance , vol.18 , Issue.3 , pp. 505-529
    • Altman, E.1    Marco, G.2    Varetto, F.3
  • 3
    • 84978567741 scopus 로고
    • Assessing the vulnerability to failure of American industrial firms
    • Zavgren, C. 1985. Assessing the vulnerability to failure of American industrial firms. Journal of business and accounting, 12(1): 19-45.
    • (1985) Journal of business and accounting , vol.12 , Issue.1 , pp. 19-45
    • Zavgren, C.1
  • 4
    • 64049087656 scopus 로고    scopus 로고
    • Bankruptcy: a logit model in comparison with a discriminant model
    • Kim, H. and Gu, Z. 2006. Bankruptcy: a logit model in comparison with a discriminant model. Journal of hospitality and tourism research, 30(4): 474-493.
    • (2006) Journal of hospitality and tourism research , vol.30 , Issue.4 , pp. 474-493
    • Kim, H.1    Gu, Z.2
  • 5
    • 0002554419 scopus 로고
    • Financial ratios as predictors of failure
    • Beaver, W. 1966. Financial ratios as predictors of failure. Journal of accounting research, 5: 71-111.
    • (1966) Journal of accounting research , vol.5 , pp. 71-111
    • Beaver, W.1
  • 6
    • 84980104458 scopus 로고
    • Financial ratios, discriminant analices and the prediction of corporate bankruptcy
    • Altman, E. 1968. Financial ratios, discriminant analices and the prediction of corporate bankruptcy. Journal of finance, 23(4): 589-609.
    • (1968) Journal of finance , vol.23 , Issue.4 , pp. 589-609
    • Altman, E.1
  • 7
    • 0032640524 scopus 로고    scopus 로고
    • Artificial neural networks in bankruptcy prediction: general framework and cross-validation analysis
    • Zhang, G., Hu, M., Patuwo, B. and Indro, D. 1999. Artificial neural networks in bankruptcy prediction: general framework and cross-validation analysis. European journal of operational research, 116(1): 16-33.
    • (1999) European journal of operational research , vol.116 , Issue.1 , pp. 16-33
    • Zhang, G.1    Hu, M.2    Patuwo, B.3    Indro, D.4
  • 9
    • 84965695870 scopus 로고
    • Bankruptcy prediction using quaterly financial statement data
    • Baldwin, J. and Glezen, G. 1992. Bankruptcy prediction using quaterly financial statement data. Journal of accounting, and finance, 7: 269-289.
    • (1992) Journal of accounting, and finance , vol.7 , pp. 269-289
    • Baldwin, J.1    Glezen, G.2
  • 11
    • 34547986858 scopus 로고    scopus 로고
    • Forecasting corporate bankruptcy: optimizing the performance of the mixed logit model
    • Jones, S. and Hensher, D. 2007. Forecasting corporate bankruptcy: optimizing the performance of the mixed logit model. Abacus, 30(4): 241-264.
    • (2007) Abacus , vol.30 , Issue.4 , pp. 241-264
    • Jones, S.1    Hensher, D.2
  • 13
    • 0002499770 scopus 로고
    • The z-score approach to measuring company solvency
    • Taffler, R. 1983. The z-score approach to measuring company solvency. The accountant's magazine, 58(2): 91-96.
    • (1983) The accountant's magazine , vol.58 , Issue.2 , pp. 91-96
    • Taffler, R.1
  • 14
    • 7944239325 scopus 로고
    • The differencial bankruptcy predictive ability of specific price level adjustments. Some empirical evidence
    • Mensah, Y. 1983. The differencial bankruptcy predictive ability of specific price level adjustments. Some empirical evidence. The accounting review, 58(2): 228-246.
    • (1983) The accounting review , vol.58 , Issue.2 , pp. 228-246
    • Mensah, Y.1
  • 15
    • 0042277514 scopus 로고
    • Alternative models for assessing the financial condition of business in Greece
    • Theodossiou, P. 1991. Alternative models for assessing the financial condition of business in Greece. Journal of business and accounting, 18(5): 697-720.
    • (1991) Journal of business and accounting , vol.18 , Issue.5 , pp. 697-720
    • Theodossiou, P.1
  • 18
    • 84978561770 scopus 로고
    • Current cost accounting ratios as predictors of business failure. The Swedish case
    • Skogsviki, K. 1980. Current cost accounting ratios as predictors of business failure. The Swedish case. Journal of business, finance and accounting, 17(1): 137-160.
    • (1980) Journal of business, finance and accounting , vol.17 , Issue.1 , pp. 137-160
    • Skogsviki, K.1
  • 19
    • 0000126580 scopus 로고
    • Predicting Japanese corporate bankruptcy in terms of financial date using neural networks
    • Tsukuda, J. and Baba, S. 1994. Predicting Japanese corporate bankruptcy in terms of financial date using neural networks. Computers and industrial engineering, 27: 445-448.
    • (1994) Computers and industrial engineering , vol.27 , pp. 445-448
    • Tsukuda, J.1    Baba, S.2
  • 20
    • 0033277431 scopus 로고    scopus 로고
    • Dynamics of modeling in data mining. Interpretive approach to bankruptcy prediction
    • Sung, T., Chang, N. and Lee, G. 1999. Dynamics of modeling in data mining. Interpretive approach to bankruptcy prediction. Journal of management information systems, 16(1): 63-85.
    • (1999) Journal of management information systems , vol.16 , Issue.1 , pp. 63-85
    • Sung, T.1    Chang, N.2    Lee, G.3
  • 22
    • 0008010862 scopus 로고    scopus 로고
    • A multivariate model for predicting business failures of hospitality firms
    • Gu, Z. and Gao, L. 2000. A multivariate model for predicting business failures of hospitality firms. Tourism and hospitality research: the survey quarterly review, 2(1): 37-49.
    • (2000) Tourism and hospitality research: The survey quarterly review , vol.2 , Issue.1 , pp. 37-49
    • Gu, Z.1    Gao, L.2
  • 23
    • 0000606001 scopus 로고
    • Empirical models for the monitoring of UK corporations
    • Tafler, R. 1984. Empirical models for the monitoring of UK corporations. Journal of banking and finance, 8(2): 199-227.
    • (1984) Journal of banking and finance , vol.8 , Issue.2 , pp. 199-227
    • Tafler, R.1
  • 24
    • 13644280436 scopus 로고    scopus 로고
    • Predicting corporate failure in the UK: a multidimensional scaling approach
    • Neophytou, E. and Miller, C. 2004. Predicting corporate failure in the UK: a multidimensional scaling approach. Journal of business finance and accouting, 31(5): 677-710.
    • (2004) Journal of business finance and accouting , vol.31 , Issue.5 , pp. 677-710
    • Neophytou, E.1    Miller, C.2
  • 25
    • 0141770890 scopus 로고
    • Identifying unsound firms in Italy. An attempt to use trend variables
    • Apetiti, A. 1984. Identifying unsound firms in Italy. An attempt to use trend variables. Journal of banking and finance, 8(2): 269-279.
    • (1984) Journal of banking and finance , vol.8 , Issue.2 , pp. 269-279
    • Apetiti, A.1
  • 26
    • 0030143666 scopus 로고    scopus 로고
    • A survey of business failures with an emphasis on prediction methods and industrial applications
    • Dimitras, A., Zanakis, S. and Zopounidis, C. 1996. A survey of business failures with an emphasis on prediction methods and industrial applications. European journal of operational research, 90: 487-513.
    • (1996) European journal of operational research , vol.90 , pp. 487-513
    • Dimitras, A.1    Zanakis, S.2    Zopounidis, C.3
  • 27
    • 0008901461 scopus 로고
    • Financial policy and market expectations
    • Logue, L. and Merville, J. 1972. Financial policy and market expectations. Financial management, 1(3): 37-44.
    • (1972) Financial management , vol.1 , Issue.3 , pp. 37-44
    • Logue, L.1    Merville, J.2
  • 28
    • 33845482427 scopus 로고    scopus 로고
    • Investment strategies for REIT inventories
    • Scherrer, P. and Mathison, T. 1996. Investment strategies for REIT inventories. Real state review, 26(1): 5-10.
    • (1996) Real state review , vol.26 , Issue.1 , pp. 5-10
    • Scherrer, P.1    Mathison, T.2
  • 29
    • 1242288455 scopus 로고    scopus 로고
    • Identification of corporate distress in UK industrials: a conditional probability analysis approach
    • Lin, L. and Piesse, J. 2004. Identification of corporate distress in UK industrials: a conditional probability analysis approach. Applied financial economics, 14: 73-82.
    • (2004) Applied financial economics , vol.14 , pp. 73-82
    • Lin, L.1    Piesse, J.2
  • 30
    • 80255132384 scopus 로고    scopus 로고
    • Applying backpropagation neuronal networks to bankruptcy prediction
    • Hu, Y. and Tseng, F. 2005. Applying backpropagation neuronal networks to bankruptcy prediction. International journal of electronic business management, 3(2): 97-103.
    • (2005) International journal of electronic business management , vol.3 , Issue.2 , pp. 97-103
    • Hu, Y.1    Tseng, F.2
  • 31
    • 0035391093 scopus 로고    scopus 로고
    • Bankruptcy prediction for credit risk using neural network: a survey and new results
    • Atiya, A. 2001. Bankruptcy prediction for credit risk using neural network: a survey and new results. IEEE Transactions on neural networks, 12(4): 929-935.
    • (2001) IEEE Transactions on neural networks , vol.12 , Issue.4 , pp. 929-935
    • Atiya, A.1
  • 32
  • 33
    • 0032640524 scopus 로고    scopus 로고
    • Artificial neural networks in bankruptcy prediction: general framework and cross-validation analysis
    • Hu, M., Zhang, G., Patuwo, B. and Indro, D. 1999. Artificial neural networks in bankruptcy prediction: general framework and cross-validation analysis. European journal of operational research, 116(1): 16-33.
    • (1999) European journal of operational research , vol.116 , Issue.1 , pp. 16-33
    • Hu, M.1    Zhang, G.2    Patuwo, B.3    Indro, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.