-
1
-
-
14844337831
-
The application of acoustic emission for detecting incipient cavitation and the best efficiency point of a 60 kW centrifugal pump: Case study
-
DOI 10.1016/j.ndteint.2004.10.002, PII S0963869504001306
-
Alfayez, L., D. Mba, and G. Dyson. 2005. The application of acoustic emission for detecting incipient cavitation and the best efficiency point of a 60kW mono block centrifugal pump. NDT&E International 38: 354-358. (Pubitemid 40339649)
-
(2005)
NDT and E International
, vol.38
, Issue.5
, pp. 354-358
-
-
Alfayez, L.1
Mba, D.2
Dyson, G.3
-
2
-
-
38249029879
-
Vibroacoustical diagnostics of machinery - An outline
-
Cempel, C. 1988. Vibroacoustical diagnostics of machinery - An outline. Mechanical systems and Signal Processing 2:135-151.
-
(1988)
Mechanical Systems and Signal Processing
, vol.2
, pp. 135-151
-
-
Cempel, C.1
-
3
-
-
0344704278
-
A combined method for triplex pump fault diagnosis based on wavelet transform, fuzzy logic and neuro-networks
-
Kong, F., and R. Chen. 2004. A combined method for triplex pump fault diagnosis based on wavelet transform, fuzzy logic and neuro-networks. Mechanical Systems and Signal Processing 18:161-168.
-
(2004)
Mechanical Systems and Signal Processing
, vol.18
, pp. 161-168
-
-
Kong, F.1
Chen, R.2
-
4
-
-
0033725799
-
The development of reactor coolant pump vibration monitoring and a diagnostic system in the nuclear power plant
-
Koo, I. S., and W. W. Kim 2000. The development of reactor coolant pump vibration monitoring and a diagnostic system in the nuclear power plant. ISA Transactions 39:309-316.
-
(2000)
ISA Transactions
, vol.39
, pp. 309-316
-
-
Koo, I.S.1
Kim, W.W.2
-
5
-
-
0028467586
-
On-line condition monitoring of rotating equipment using neural networks
-
Peck, J. P., and J. Burrows. 1994. On-line condition monitoring of rotating equipment using neural networks. ISA Transactions 33:159-164.
-
(1994)
ISA Transactions
, vol.33
, pp. 159-164
-
-
Peck, J.P.1
Burrows, J.2
-
6
-
-
56349133338
-
A novel hybrid intelligent method based on C4.5 decision tree classifier and one-against-all approach for multi-class classification problems
-
Polat, K., and S. Gunes. 2009. A novel hybrid intelligent method based on C4.5 decision tree classifier and one-against-all approach for multi-class classification problems. Expert Systems with Applications 36:1587-1592.
-
(2009)
Expert Systems with Applications
, vol.36
, pp. 1587-1592
-
-
Polat, K.1
Gunes, S.2
-
9
-
-
34548515285
-
Artificial neural network approach for fault detection in rotary system
-
Rajakarunakaran, S., P. Venkumar, D. Devaraj, and K. Surya Prakasa Rao. Artificial neural network approach for fault detection in rotary system. Applied Soft Computing 8:740-748.
-
Applied Soft Computing
, vol.8
, pp. 740-748
-
-
Rajakarunakaran, S.1
Venkumar, P.2
Devaraj, D.3
Surya Prakasa Rao, K.4
-
10
-
-
33947246080
-
Fault diagnosis of rotating machinery based on auto-associative neural networks and wavelet transforms
-
DOI 10.1016/j.jsv.2007.01.006, PII S0022460X07000338
-
Sanz, J., R. Perera, and C. Huerta. 2007. Fault diagnosis of rotating machinery based on auto associative neural networks and wavelet transforms. Journal of Sound and Vibration 302:981-999. (Pubitemid 46435581)
-
(2007)
Journal of Sound and Vibration
, vol.302
, Issue.4-5
, pp. 981-999
-
-
Sanz, J.1
Perera, R.2
Huerta, C.3
-
11
-
-
33750591809
-
Feature selection using Decision Tree and classification through Proximal Support Vector Machine for fault diagnostics of roller bearing
-
DOI 10.1016/j.ymssp.2006.05.004, PII S0888327006001142
-
Sugumaran, V., V. Muralidharan, and K. I. Ramachandran. 2007. Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing. Mechanical Systems and Signal Processing 21:930-942. (Pubitemid 44679818)
-
(2007)
Mechanical Systems and Signal Processing
, vol.21
, Issue.2
, pp. 930-942
-
-
Sugumaran, V.1
Muralidharan, V.2
Ramachandran, K.I.3
-
12
-
-
34047251878
-
Automatic rule learning using decision tree for fuzzy classifier in fault diagnosis of roller bearing
-
DOI 10.1016/j.ymssp.2006.09.007, PII S0888327006001920
-
Sugumaran, V., and K. I. Ramachandran. 2007. Automatic rule learning using decision tree for fuzzy classifier in fault diagnosis of roller bearing. Mechanical Systems and Signal Processing 21:2237-2247. (Pubitemid 46550764)
-
(2007)
Mechanical Systems and Signal Processing
, vol.21
, Issue.5
, pp. 2237-2247
-
-
Sugumaran, V.1
Ramachandran, K.I.2
-
13
-
-
33845472656
-
Decision tree and PCA-based fault diagnosis of rotating machinery
-
DOI 10.1016/j.ymssp.2006.06.010, PII S0888327006001336
-
Sun, W., J. Chen, and J. Li. 2007. Decision tree and PCA-based fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing 21:1300-1317. (Pubitemid 44914159)
-
(2007)
Mechanical Systems and Signal Processing
, vol.21
, Issue.3
, pp. 1300-1317
-
-
Sun, W.1
Chen, J.2
Li, J.3
-
14
-
-
63849217654
-
Fault diagnosis of centrifugal pump using symptom parameters in frequency domain
-
Wang, H. Q., and P. Chen. 2007a. Fault diagnosis of centrifugal pump using symptom parameters in frequency domain. CIGR Ejournal 9:1-14.
-
(2007)
CIGR Ejournal
, vol.9
, pp. 1-14
-
-
Wang, H.Q.1
Chen, P.2
-
15
-
-
43449095877
-
Sequential condition diagnosis for centrifugal pump system using fuzzy neural network
-
Wang, H., and P. Chen. 2007b. Sequential condition diagnosis for centrifugal pump system using fuzzy neural network. Neural Information Processing-Letters and Reviews 2:41-50.
-
(2007)
Neural Information Processing-Letters and Reviews
, vol.2
, pp. 41-50
-
-
Wang, H.1
Chen, P.2
-
18
-
-
45849102084
-
Fault diagnosis based on Walsh transform and support vector machine
-
Xiang, X., J. Zhou, X. An, B. Peng, and J. Yang. 2008. Fault diagnosis based on Walsh transform and support vector machine. Mechanical systems and signal processing 22:1685-1693.
-
(2008)
Mechanical Systems and Signal Processing
, vol.22
, pp. 1685-1693
-
-
Xiang, X.1
Zhou, J.2
An, X.3
Peng, B.4
Yang, J.5
-
19
-
-
31044444738
-
Support vector machines-based fault diagnosis for turbo-pump rotor
-
DOI 10.1016/j.ymssp.2005.09.006, PII S0888327005001433
-
Yuan, F., and F.-L. Chu. 2006. Support vector machines-based fault diagnosis for turbo-pump rotor. Mechanical Systems and Signal Processing 20:939-952. (Pubitemid 43121167)
-
(2006)
Mechanical Systems and Signal Processing
, vol.20
, Issue.4
, pp. 939-952
-
-
Yuan, S.-F.1
Chu, F.-L.2
-
20
-
-
33846837272
-
Fault diagnostics based on particle swarm optimisation and support vector machines
-
DOI 10.1016/j.ymssp.2006.07.008, PII S0888327006001440
-
Yuan, S.-F., and F.-.L. Chu. 2007. Fault diagnostics based on particle swarm optimization and support vector machines. Mechanical Systems and Signal Processing 21:1787-1798. (Pubitemid 46205101)
-
(2007)
Mechanical Systems and Signal Processing
, vol.21
, Issue.4
, pp. 1787-1798
-
-
Yuan, S.-F.1
Chu, F.-L.2
-
22
-
-
0344121584
-
Fault diagnosis system for rotary machine based on fuzzy neural networks
-
DOI 10.1299/jsmec.46.1035
-
Zhang, S., T. Asakura, X. Xu, and B. Xu. 2003. Fault diagnosis system for rotary machine based on Fuzzy Neural Networks. JSME International Journal 46:1035-1041. (Pubitemid 37458204)
-
(2003)
JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing
, vol.46
, Issue.3
, pp. 1035-1041
-
-
Zhang, S.1
Asakura, T.2
Xu, X.3
Xu, B.4
-
23
-
-
0008108251
-
Non-stationary modeling of vibration signals for monitoring the condition of machinery
-
Zhuge, Q., Y. Lu, and S. Yang. 1990. Non-stationary modeling of vibration signals for monitoring the condition of machinery. Mechanical Systems and Signal Processing 4:355-365.
-
(1990)
Mechanical Systems and Signal Processing
, vol.4
, pp. 355-365
-
-
Zhuge, Q.1
Lu, Y.2
Yang, S.3
|