메뉴 건너뛰기




Volumn 2, Issue 2, 2009, Pages 56-64

A comparison between three neural network models for classification problems

Author keywords

Classification problems; Generalized regression neural networks; Learning vector quantization; Levenberg Marquardt

Indexed keywords


EID: 77949549405     PISSN: 19945450     EISSN: None     Source Type: Journal    
DOI: 10.3923/jai.2009.56.64     Document Type: Article
Times cited : (33)

References (14)
  • 1
    • 33751041735 scopus 로고    scopus 로고
    • SMART-TV: A fast and scalable nearest neighbor based classifier for data mining
    • Apr. 23-27, Dijon, France
    • Abidin, T. and W. Perrizo, 2006. SMART-TV: A fast and scalable nearest neighbor based classifier for data mining. Proceedings of the 2006 ACM Symposium on Applied Computing, Apr. 23-27, Dijon, France, pp: 536-540.
    • (2006) Proceedings of the 2006 ACM Symposium on Applied Computing , pp. 536-540
    • Abidin, T.1    Perrizo, W.2
  • 3
    • 33748878951 scopus 로고    scopus 로고
    • Statistical Neural Network Based Classifiers for Letter Recognition
    • D.S., K. Li and G.W. Irwin(Eds.). Springer-Verlag, Berlin Heidelberg
    • Burcu, E. and Y. Tulay, 2006. Statistical Neural Network Based Classifiers for Letter Recognition. In: Intelligent Computing in Signal Processing and Pattern Recognition, Huang, D.S., K. Li and G.W. Irwin(Eds.). Springer-Verlag, Berlin Heidelberg, pp: 1081-1086.
    • (2006) Intelligent Computing in Signal Processing and Pattern Recognition, Huang , pp. 1081-1086
    • Burcu, E.1    Tulay, Y.2
  • 4
    • 6344285519 scopus 로고    scopus 로고
    • A similarity learning approach to content-based image retrieval: Application to digital mammography
    • El-Naqa, I., Y. Yang, N. Galatsanos, R. Nishikawa and M. Wernick, 2004. A similarity learning approach to content-based image retrieval: Application to digital mammography. IEEE Trans. Med. Imaging, 23: 1233-1244.
    • (2004) IEEE Trans. Med. Imaging , vol.23 , pp. 1233-1244
    • El-Naqa, I.1    Yang, Y.2    Galatsanos, N.3    Nishikawa, R.4    Wernick, M.5
  • 5
    • 36448984344 scopus 로고    scopus 로고
    • Bayesian networks for imputation in classification problems
    • Estevam, R., R. Eduardo and H.F. Ebecken, 2007. Bayesian networks for imputation in classification problems. J Intel. Inform. Syst. 29: 231-252.
    • (2007) J Intel. Inform. Syst. , vol.29 , pp. 231-252
    • Estevam, R.1    Eduardo, R.2    Ebecken, H.F.3
  • 6
    • 67349086060 scopus 로고    scopus 로고
    • Technology independent circuit sizing for standard cell based design using neural networks
    • Kahraman, N. and Y. Tulay, 2009. Technology independent circuit sizing for standard cell based design using neural networks. Digital Signal Process., 19: 708-714.
    • (2009) Digital Signal Process , vol.19 , pp. 708-714
    • Kahraman, N.1    Tulay, Y.2
  • 8
    • 33745925296 scopus 로고    scopus 로고
    • Is Levenberg-Marquardt the most efficient optimization algorithm for implementing bundle adjustment
    • Oct. 17-20, IEEE Xplore, London
    • Lourakis, A. and A. Argyros, 2005. Is Levenberg-Marquardt the most efficient optimization algorithm for implementing bundle adjustment. Proceedings of the 10th IEEE International Conference on Computer Vision, Oct. 17-20, IEEE Xplore, London, pp: 1526-1531.
    • (2005) Proceedings of the 10th IEEE International Conference on Computer Vision , pp. 1526-1531
    • Lourakis, A.1    Argyros, A.2
  • 10
    • 38649129100 scopus 로고    scopus 로고
    • Genetic optimization of GRNN for pattern recognition without feature extraction
    • Övünç, P. and T. Yildinm, 2008. Genetic optimization of GRNN for pattern recognition without feature extraction. Expert Syst. Appl., 34: 2444-2448.
    • (2008) Expert Syst. Appl. , vol.34 , pp. 2444-2448
    • Övünç, P.1    Yildinm, T.2
  • 11
    • 77949556296 scopus 로고    scopus 로고
    • A hybrid neural network and traditional approach for forecasting lumpy demand
    • Pour, A.N., R.B. Tabar and A. Rahimzadeh, 2008. A hybrid neural network and traditional approach for forecasting lumpy demand. Proc. World Acad. Sci. Eng. Technol., 30: 384-389.
    • (2008) Proc. World Acad. Sci. Eng. Technol. , vol.30 , pp. 384-389
    • Pour, A.N.1    Tabar, R.B.2    Rahimzadeh, A.3
  • 12
    • 0038159964 scopus 로고    scopus 로고
    • Soft learning vector quantization
    • Seo, S. and K. Obermayer, 2003. Soft learning vector quantization. Neural Comput. 15: 1589-1604.
    • (2003) Neural Comput. , vol.15 , pp. 1589-1604
    • Seo, S.1    Obermayer, K.2
  • 14
    • 0345257354 scopus 로고    scopus 로고
    • A fuzzy-soft learning vector quantization
    • Wu, K.L. and M.S. Yang, 2003. A fuzzy-soft learning vector quantization. Neurocomputing, 55: 681-697.
    • (2003) Neurocomputing , vol.55 , pp. 681-697
    • Wu, K.L.1    Yang, M.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.