메뉴 건너뛰기




Volumn 37, Issue 13, 2006, Pages 969-980

Extraction of classification rules characterized by ellipsoidal regions using soft-computing techniques

Author keywords

Data mining; Evolutionary strategy; Multilayer classification systems; Regularization; Rule extraction; Self organizing mapping

Indexed keywords


EID: 84871619666     PISSN: 00207721     EISSN: 14645319     Source Type: Journal    
DOI: 10.1080/00207720600891489     Document Type: Article
Times cited : (2)

References (36)
  • 2
    • 0032287374 scopus 로고    scopus 로고
    • Dynamic cluster generation for fuzzy classifier with ellipsoidal regions
    • S. Abe, “Dynamic cluster generation for fuzzy classifier with ellipsoidal regions”, IEEE Trans. Syst. Man, Cybernet.: Part B, 28, pp. 869-876, 1998.
    • (1998) IEEE Trans. Syst. Man, Cybernet , vol.28 , pp. 869-876
    • Abe, S.1
  • 3
    • 0033355287 scopus 로고    scopus 로고
    • The ‘weight smoothing regularization of MLP for Jacobian stabilization”
    • F. Aires, M. Schmitt, A. Chedin and N. Scott, “The ‘weight smoothing’ regularization of MLP for Jacobian stabilization”, IEEE Trans. Neural Netw., 10, pp. 1502-1510, 1999.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , pp. 1502-1510
    • Aires, F.1    Schmitt, M.2    Chedin, A.3    Scott, N.4
  • 4
    • 0031249162 scopus 로고    scopus 로고
    • Hybrid BRAINNE: Further developments in extracting symbolic disjunctive rules
    • W.F. Bloomer, T.S. Dillon and M. Witten, “Hybrid BRAINNE: further developments in extracting symbolic disjunctive rules”, Expert Syst. Appl., 13, pp. 163-168, 1997.
    • (1997) Expert Syst. Appl. , vol.13 , pp. 163-168
    • Bloomer, W.F.1    Dillon, T.S.2    Witten, M.3
  • 6
    • 0029345982 scopus 로고
    • Class-dependent discretization for inductive learning from continuous and mixed-mode data
    • J.Y. Ching, A.K.C. Wong and K.C.C. Chan, “Class-dependent discretization for inductive learning from continuous and mixed-mode data”, IEEE Trans. Pattern Anal. Mach. Intell., 17, pp. 641-651, 1995.
    • (1995) IEEE Trans. Pattern Anal. Mach. Intell. , vol.17 , pp. 641-651
    • Ching, J.Y.1    Wong, A.K.C.2    Chan, K.C.C.3
  • 9
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. Fisher, “The use of multiple measurements in taxonomic problems”, Ann. Eugen. Part II, 7, pp. 179-188, 1936.
    • (1936) Ann. Eugen. Part II , vol.7 , pp. 179-188
    • Fisher, R.1
  • 10
    • 0032164160 scopus 로고    scopus 로고
    • A neural network model for learning domain rules based on its activation function characteristics
    • L.M. Fu, “A neural network model for learning domain rules based on its activation function characteristics”, IEEE Trans. Neural Netw., 9, pp. 787-795, 1998.
    • (1998) IEEE Trans. Neural Netw. , vol.9 , pp. 787-795
    • Fu, L.M.1
  • 11
    • 0024053288 scopus 로고
    • Learned classification of sonar targets using a massively parallel networks
    • R.P. Gorman and T.J. Sejnowski, “Learned classification of sonar targets using a massively parallel networks”, IEEE Trans. Acoust. Speech Signal Proces., 36, pp. 1135-1140, 1988.
    • (1988) IEEE Trans. Acoust. Speech Signal Proces. , vol.36 , pp. 1135-1140
    • Gorman, R.P.1    Sejnowski, T.J.2
  • 13
    • 0031168162 scopus 로고    scopus 로고
    • Providing understanding of the behavior of feedforward neural networks
    • S.H. Huang and M. Endsley, “Providing understanding of the behavior of feedforward neural networks”, IEEE Trans. Syst. Man, Cybernet.: Part B, 27, pp. 465-474, 1997.
    • (1997) IEEE Trans. Syst. Man, Cybernet.: Part B , vol.27 , pp. 465-474
    • Huang, S.H.1    Endsley, M.2
  • 14
    • 0027595614 scopus 로고
    • Neural networks that learn from fuzzy if-then rules
    • H. Ishibuchi, R. Fujioka and H. Tanaka, “Neural networks that learn from fuzzy if-then rules”, IEEE Trans. Fuzzy Syst., 1, pp. 85-97, 1993.
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , pp. 85-97
    • Ishibuchi, H.1    Fujioka, R.2    Tanaka, H.3
  • 16
    • 0026137713 scopus 로고
    • A regularized iterative image restoration algorithm
    • K. Katsaggelos and R.M. Mersereau, “A regularized iterative image restoration algorithm”, IEEE Trans. Signal Proces., 39, pp. 914-929, 1991.
    • (1991) IEEE Trans. Signal Proces. , vol.39 , pp. 914-929
    • Katsaggelos, K.1    Mersereau, R.M.2
  • 20
    • 0034186913 scopus 로고    scopus 로고
    • Interactive visualization and analysis of hierarchical neural projections for data mining
    • A. Konig, “Interactive visualization and analysis of hierarchical neural projections for data mining”, IEEE Trans. Neural Netw. Spec. Issue Neural Netw. Data Min. Knowl. Disc., 11, pp. 615-624, 2000.
    • (2000) IEEE Trans. Neural Netw. Spec. Issue Neural Netw. Data Min. Knowl. Disc. , vol.11 , pp. 615-624
    • Konig, A.1
  • 21
    • 0024771475 scopus 로고
    • Pattern classification using neural networks
    • R.P. Lippmann, “Pattern classification using neural networks”, IEEE Commun. Mag., 11, pp. 47-64, 1989.
    • (1989) IEEE Commun. Mag. , vol.11 , pp. 47-64
    • Lippmann, R.P.1
  • 22
    • 0027555471 scopus 로고
    • Analysis of the convergence properties of topology preserving neural networks
    • Z.P. Lo and B. Bavarian, “Analysis of the convergence properties of topology preserving neural networks”, IEEE Trans. Neural Netw., 4, pp. 207-220, 1993.
    • (1993) IEEE Trans. Neural Netw. , vol.4 , pp. 207-220
    • Lo, Z.P.1    Bavarian, B.2
  • 23
    • 0030383603 scopus 로고    scopus 로고
    • Effective data mining using neural networks
    • H. Lu, R. Setion and H. Liu, “Effective data mining using neural networks”, IEEE Trans. Knowl. Data Eng., 8, pp. 957-961, 1996.
    • (1996) IEEE Trans. Knowl. Data Eng. , vol.8 , pp. 957-961
    • Lu, H.1    Setion, R.2    Liu, H.3
  • 24
    • 0031274113 scopus 로고    scopus 로고
    • Knowledge-based fuzzy MLP for classification and rule generation
    • S. Mitra, R.K. De and S.K. Pal, “Knowledge-based fuzzy MLP for classification and rule generation”, IEEE Trans. Neural Netw., 8, pp. 1338-1350, 1997.
    • (1997) IEEE Trans. Neural Netw. , vol.8 , pp. 1338-1350
    • Mitra, S.1    De, R.K.2    Pal, S.K.3
  • 26
    • 0030085145 scopus 로고    scopus 로고
    • Reorganizing knowledge in neural networks: An explanatory mechanism for neural networks in data classification problems
    • H. Narazaki, T. Watanabe and M. Yamamoto, “Reorganizing knowledge in neural networks: an explanatory mechanism for neural networks in data classification problems”, IEEE Trans. Syst. Man, Cybernet.: Part B, 26, pp. 107-117, 1996.
    • (1996) IEEE Trans. Syst. Man, Cybernet. , vol.26 , pp. 107-117
    • Narazaki, H.1    Watanabe, T.2    Yamamoto, M.3
  • 28
    • 0001983782 scopus 로고
    • Using single-layered neural networks for the extraction of conjunctive rules and hierarchical classifications
    • S. Sestito and T.S. Dillon, “Using single-layered neural networks for the extraction of conjunctive rules and hierarchical classifications”, J. Intell. Syst, 1, pp. 157-173, 1991.
    • (1991) J. Intell. Syst , vol.1 , pp. 157-173
    • Sestito, S.1    Dillon, T.S.2
  • 30
    • 0026927202 scopus 로고
    • Fuzzy min-max neural networks-Part I: Classification
    • P.K. Simpson, “Fuzzy min-max neural networks-Part I: classification”, IEEE Trans. Neural Netw., 3, pp. 776-786, 1992.
    • (1992) IEEE Trans. Neural Netw. , vol.3 , pp. 776-786
    • Simpson, P.K.1
  • 31
    • 0032685184 scopus 로고    scopus 로고
    • Symbolic interpretation of artificial neural networks
    • I.A. Taha and J. Ghosh, “Symbolic interpretation of artificial neural networks”, IEEE Trans. Knowl. Data Eng., 11, pp. 448-463, 1998.
    • (1998) IEEE Trans. Knowl. Data Eng. , vol.11 , pp. 448-463
    • Taha, I.A.1    Ghosh, J.2
  • 32
    • 0032208720 scopus 로고    scopus 로고
    • The truth will come to light: Directions and challenges in extracting the knowledge embedded with trained artificial neural networks
    • A.B. Tickle, R. Andrews, M. Golea and J. Diederich, “The truth will come to light: directions and challenges in extracting the knowledge embedded with trained artificial neural networks”, IEEE Trans. Neural Netw, 9, pp. 1057-1068, 1998.
    • (1998) IEEE Trans. Neural Netw , vol.9 , pp. 1057-1068
    • Tickle, A.B.1    Andrews, R.2    Golea, M.3    Diederich, J.4
  • 33
    • 0027678679 scopus 로고
    • Extracting refined rules from knowledge-based neural networks
    • C. Towell and J. Shavlik, “Extracting refined rules from knowledge-based neural networks”, Mach. Learn., 13, pp. 71-101, 1993.
    • (1993) Mach. Learn. , vol.13 , pp. 71-101
    • Towell, C.1    Shavlik, J.2
  • 35
    • 0034283719 scopus 로고    scopus 로고
    • Enhancing the estimation of plant Jacobian for adaptive neural inverse control
    • D.H. Wang and P. Bao, “Enhancing the estimation of plant Jacobian for adaptive neural inverse control”, Neurocomputing, 34, pp. 99-115, 2000.
    • (2000) Neurocomputing , vol.34 , pp. 99-115
    • Wang, D.H.1    Bao, P.2
  • 36
    • 0026745681 scopus 로고
    • Convergence of self-organizing neural algorithm
    • H. Yang and T.S. Dillon, “Convergence of self-organizing neural algorithm”, Neural Netw., 5, pp. 485-493, 1992.
    • (1992) Neural Netw. , vol.5 , pp. 485-493
    • Yang, H.1    Dillon, T.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.