메뉴 건너뛰기




Volumn 22, Issue 4, 2012, Pages 1549-1578

Ergodic mirror descent

Author keywords

Convex programming; Markov chain; Mirror descent algorithm; Mixing; Monte Carlo sampling; Stochastic optimization

Indexed keywords

DECISION PROBLEMS; DISTRIBUTED OPTIMIZATION; ERGODICS; HIGH DIMENSIONAL SPACES; HIGH PROBABILITY; MONTE CARLO SAMPLING; PEER TO PEER; STOCHASTIC OPTIMIZATION PROBLEMS; STOCHASTIC OPTIMIZATIONS; STRONG CONVERGENCE; SUBGRADIENT DESCENT;

EID: 84871567576     PISSN: 10526234     EISSN: None     Source Type: Journal    
DOI: 10.1137/110836043     Document Type: Article
Times cited : (146)

References (40)
  • 1
    • 84860244324 scopus 로고    scopus 로고
    • Information-theoretic lower bounds on the oracle complexity of convex optimization
    • A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright, Information-theoretic lower bounds on the oracle complexity of convex optimization, IEEE Trans. Inform. Theory, 58 (2012), pp. 3235-3249.
    • (2012) IEEE Trans. Inform. Theory , vol.58 , pp. 3235-3249
    • Agarwal, A.1    Bartlett, P.L.2    Ravikumar, P.3    Wainwright, M.J.4
  • 2
    • 84972574511 scopus 로고
    • Weighted sums of certain dependent random variables
    • K. Azuma, Weighted sums of certain dependent random variables, Tohoku Math. J., 68 (1967), pp. 357-367.
    • (1967) Tohoku Math. J. , vol.68 , pp. 357-367
    • Azuma, K.1
  • 3
    • 0037403111 scopus 로고    scopus 로고
    • Mirror descent and nonlinear projected subgradient methods for convex optimization
    • A. Beck and M. Teboulle, Mirror descent and nonlinear projected subgradient methods for convex optimization, Oper. Res. Lett., 31 (2003), pp. 167-175.
    • (2003) Oper. Res. Lett. , vol.31 , pp. 167-175
    • Beck, A.1    Teboulle, M.2
  • 4
    • 0036342276 scopus 로고    scopus 로고
    • The ordered subsets mirror descent optimization method with applications to tomography
    • A. Ben-Tal, T. Margalit, and A. Nemirovski, The ordered subsets mirror descent optimization method with applications to tomography, SIAM J. Optim., 12 (2001), pp. 79-108.
    • (2001) SIAM J. Optim , vol.12 , pp. 79-108
    • Ben-Tal, A.1    Margalit, T.2    Nemirovski, A.3
  • 5
    • 34250435546 scopus 로고
    • Stochastic optimization problems with nondifferentiable cost functionals
    • D. P. Bertsekas, Stochastic optimization problems with nondifferentiable cost functionals, J. Optim. Theory Appl., 12 (1973), pp. 218-231.
    • (1973) J. Optim. Theory Appl. , vol.12 , pp. 218-231
    • Bertsekas, D.P.1
  • 9
    • 77953082808 scopus 로고    scopus 로고
    • Basic properties of strong mixing conditions. A survey and some open questions
    • R. C. Bradley, Basic properties of strong mixing conditions. A survey and some open questions, Probab. Surveys, 2 (2005), pp. 107-144.
    • (2005) Probab. Surveys , vol.2 , pp. 107-144
    • Bradley, R.C.1
  • 11
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, 20 (1995), pp. 273- 297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 13
    • 0000489740 scopus 로고
    • Information-type measures of difference of probability distributions and indirect observation
    • I. Csisz'ar, Information-type measures of difference of probability distributions and indirect observation, Studia Sci. Math. Hungar., 2 (1967), pp. 299-318.
    • (1967) Studia Sci. Math. Hungar. , vol.2 , pp. 299-318
    • Csisz'Ar, I.1
  • 15
    • 84857708133 scopus 로고    scopus 로고
    • Dual averaging for distributed optimization: Convergence analysis and network scaling
    • J. C. Duchi, A. Agarwal, and M. J. Wainwright, Dual averaging for distributed optimization: Convergence analysis and network scaling, IEEE Trans. Automat. Control, 57 (2012), pp. 592-606.
    • (2012) IEEE Trans. Automat. Control , vol.57 , pp. 592-606
    • Duchi, J.C.1    Agarwal, A.2    Wainwright, M.J.3
  • 16
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • A. Gelman and D. B. Rubin, Inference from iterative simulation using multiple sequences, Statist. Sci., 7 (1992), pp. 457-472.
    • (1992) Statist. Sci. , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 19
    • 0002734223 scopus 로고    scopus 로고
    • The Markov chain Monte Carlo method: An approach to approximate counting and integration
    • D. S. Hochbaum, ed., PWS Publishing, Boston
    • M. Jerrum and A. Sinclair, The Markov chain Monte Carlo method: An approach to approximate counting and integration, in Approximation Algorithms for NP-hard Problems, D. S. Hochbaum, ed., PWS Publishing, Boston, 1996.
    • (1996) Approximation Algorithms for NP-hard Problems
    • Jerrum, M.1    Sinclair, A.2
  • 20
    • 73249115078 scopus 로고    scopus 로고
    • A randomized incremental subgradient method for distributed optimization in networked systems
    • B. Johansson, M. Rabi, and M. Johansson, A randomized incremental subgradient method for distributed optimization in networked systems, SIAM J. Optim., 20 (2009), pp. 1157- 1170.
    • (2009) SIAM J. Optim , vol.20 , pp. 1157-1170
    • Johansson, B.1    Rabi, M.2    Johansson, M.3
  • 23
    • 24344475712 scopus 로고    scopus 로고
    • Towards a unified approach for proving geometric ergodicity and mixing properties of nonlinear autoregressive processes
    • E. Liebscher, Towards a unified approach for proving geometric ergodicity and mixing properties of nonlinear autoregressive processes, J. Time Ser. Anal., 26 (2005), pp. 669-689.
    • (2005) J. Time Ser. Anal. , vol.26 , pp. 669-689
    • Liebscher, E.1
  • 27
    • 0000548970 scopus 로고
    • Mixing properties of ARMA processes
    • A. Mokkadem, Mixing properties of ARMA processes, Stochastic Process. Appl., 29 (1988), pp. 309-315.
    • (1988) Stochastic Process. Appl. , vol.29 , pp. 309-315
    • Mokkadem, A.1
  • 28
    • 0036342213 scopus 로고    scopus 로고
    • Incremental subgradient methods for nondifferentiable optimization
    • A. Nedi'c and D. P. Bertsekas, Incremental subgradient methods for nondifferentiable optimization, SIAM J. Optim., 12 (2001), pp. 109-138.
    • (2001) SIAM J. Optim , vol.12 , pp. 109-138
    • Nedi'C, A.1    Bertsekas, D.P.2
  • 29
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, Robust stochastic approximation approach to stochastic programming, SIAM J. Optim., 19 (2009), pp. 1574-1609.
    • (2009) SIAM J. Optim , vol.19 , pp. 1574-1609
    • Nemirovski, A.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 31
    • 0026899240 scopus 로고
    • Acceleration of stochastic approximation by averaging
    • B. T. Polyak and A. B. Juditsky, Acceleration of stochastic approximation by averaging, SIAM J. Control Optim., 30 (1992), pp. 838-855.
    • (1992) SIAM J. Control Optim. , vol.30 , pp. 838-855
    • Polyak, B.T.1    Juditsky, A.B.2
  • 32
    • 0018922890 scopus 로고
    • Robust identification
    • B. T. Polyak and J. Tsypkin, Robust identification, Automatica, 16 (1980), pp. 53-63.
    • (1980) Automatica , vol.16 , pp. 53-63
    • Polyak, B.T.1    Tsypkin, J.2
  • 33
    • 70450201554 scopus 로고    scopus 로고
    • Incremental stochastic subgradient algorithms for convex optimization
    • S. S. Ram, A. Nedi'c, and V. V. Veeravalli, Incremental stochastic subgradient algorithms for convex optimization, SIAM J. Optim., 20 (2009), pp. 691-717.
    • (2009) SIAM J. Optim , vol.20 , pp. 691-717
    • Ram, S.S.1    Nedi'C, A.2    Veeravalli, V.V.3
  • 34
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Statist., 22 (1951), pp. 400-407.
    • (1951) Ann. Math. Statist. , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 35
    • 0020021696 scopus 로고
    • On the interchange of subdifferentiation and conditional expectation for convex functionals, Stochastics
    • R. T. Rockafellar and R. J. B. Wets, On the interchange of subdifferentiation and conditional expectation for convex functionals, Stochastics: An International Journal of Probability and Stochastic Processes, 7 (1982), pp. 173-182.
    • (1982) An International Journal of Probability and Stochastic Processes , vol.7 , pp. 173-182
    • Rockafellar, R.T.1    Wets, R.J.B.2
  • 37
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • V. N. Vapnik and A. Y. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities, Theory Probab. Appl., 16 (1971), pp. 264-280.
    • (1971) Theory Probab. Appl. , vol.16 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 38
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the em algorithm and the poor man's data augmentation algorithms
    • G. Wei and M. A. Tanner, A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms, J. Amer. Statist. Assoc., 85 (1990), pp. 699-704.
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 699-704
    • Wei, G.1    Tanner, M.A.2
  • 39
    • 0003161174 scopus 로고
    • Rates of convergence for empirical processes of stationary mixing sequences
    • B. Yu, Rates of convergence for empirical processes of stationary mixing sequences, Ann. Probab., 22 (1994), pp. 94-116.
    • (1994) Ann. Probab. , vol.22 , pp. 94-116
    • Yu, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.