-
1
-
-
65049084831
-
Complexity, Nonlinearity and Chaos
-
Singapore World Scientific 10.1142/9789814355216
-
Baleanu D., Diethelm K., Scalas E., Trujillo J. J., Fractional Calculus Models and Numerical Methods 2012 Singapore World Scientific Complexity, Nonlinearity and Chaos 10.1142/9789814355216 2894576
-
(2012)
Fractional Calculus Models and Numerical Methods
, pp. 2894576
-
-
Baleanu, D.1
Diethelm, K.2
Scalas, E.3
Trujillo, J.J.4
-
6
-
-
0003810094
-
-
New York, NY, USA Gordon and Breach Science
-
Samko S. G., Kilbas A. A., Marichev O. I., Fractional Derivatives and Integrals: Theory and Applications 1993 New York, NY, USA Gordon and Breach Science 1347689
-
(1993)
Fractional Derivatives and Integrals: Theory and Applications
, pp. 1347689
-
-
Samko, S.G.1
Kilbas, A.A.2
Marichev, O.I.3
-
7
-
-
77958019377
-
A Fite type result for sequential fractional differential equations
-
2741929
-
Abdeljawad T., Baleanu D., Jarad F., Mustafa O. G., Trujillo J. J., A Fite type result for sequential fractional differential equations. Dynamic Systems and Applications 2010 19 2 383 394 2741929
-
(2010)
Dynamic Systems and Applications
, vol.19
, Issue.2
, pp. 383-394
-
-
Abdeljawad, T.1
Baleanu, D.2
Jarad, F.3
Mustafa, O.G.4
Trujillo, J.J.5
-
8
-
-
34247636164
-
A diffusion wave equation with two fractional derivatives of different order
-
10.1088/1751-8113/40/20/006 2320145
-
Atanacković T. M., Pilipović S., Zorica D., A diffusion wave equation with two fractional derivatives of different order. Journal of Physics A 2007 40 20 5319 5333 10.1088/1751-8113/40/20/006 2320145
-
(2007)
Journal of Physics A
, vol.40
, Issue.20
, pp. 5319-5333
-
-
Atanacković, T.M.1
Pilipović, S.2
Zorica, D.3
-
9
-
-
42449096849
-
On exact solutions of a class of fractional Euler-lagrange equations
-
DOI 10.1007/s11071-007-9281-7
-
Baleanu D., Trujillo J. J., On exact solutions of a class of fractional Euler-Lagrange equations. Nonlinear Dynamics 2008 52 4 331 335 10.1007/s11071-007-9281-7 2401415 (Pubitemid 351572392)
-
(2008)
Nonlinear Dynamics
, vol.52
, Issue.4
, pp. 331-335
-
-
Baleanu, D.1
Trujillo, J.J.2
-
11
-
-
74649087129
-
On fractional resolvent operator functions
-
Chen C., Li M., On fractional resolvent operator functions. Semigroup Forum 2010 80 1 121 142
-
(2010)
Semigroup Forum
, vol.80
, Issue.1
, pp. 121-142
-
-
Chen, C.1
Li, M.2
-
12
-
-
77955925569
-
Solutions to stochastic fractional oscillation equations
-
10.1016/j.aml.2010.06.032 2718512
-
Karczewska A., Lizama C., Solutions to stochastic fractional oscillation equations. Applied Mathematics Letters 2010 23 11 1361 1366 10.1016/j.aml.2010. 06.032 2718512
-
(2010)
Applied Mathematics Letters
, vol.23
, Issue.11
, pp. 1361-1366
-
-
Karczewska, A.1
Lizama, C.2
-
13
-
-
79952093526
-
A characterization of periodic solutions for time-fractional differential equations in UMD spaces and applications
-
10.1002/mana.200810158 2789193
-
Keyantuo V., Lizama C., A characterization of periodic solutions for time-fractional differential equations in UMD spaces and applications. Mathematische Nachrichten 2011 284 4 494 506 10.1002/mana.200810158 2789193
-
(2011)
Mathematische Nachrichten
, vol.284
, Issue.4
, pp. 494-506
-
-
Keyantuo, V.1
Lizama, C.2
-
14
-
-
69449088268
-
(a, k) -regularized C -resolvent families: Regularity and local properties
-
10.1155/2009/8582422533573
-
Kostić M., (a, k) -regularized C -resolvent families: regularity and local properties. Abstract and Applied Analysis 2009 27 858242 10.1155/2009/858242 2533573
-
(2009)
Abstract and Applied Analysis
, vol.27
, pp. 858242
-
-
Kostić, M.1
-
15
-
-
84869148635
-
On a class of time-fractional differential equations
-
Kostić M., Li C.-G., Li M., Piskarev S., On a class of time-fractional differential equations. Fractional Calculus Applied Analysis 2012 15 4 639 668
-
(2012)
Fractional Calculus Applied Analysis
, vol.15
, Issue.4
, pp. 639-668
-
-
Kostić, M.1
Li, C.-G.2
Li, M.3
Piskarev, S.4
-
16
-
-
68149100950
-
Fractional evolution equations governed by coercive differential operators
-
438690 10.1155/2009/438690 2516010
-
Li F.-B., Li M., Zheng Q., Fractional evolution equations governed by coercive differential operators. Abstract and Applied Analysis 2009 14 438690 10.1155/2009/438690 2516010
-
(2009)
Abstract and Applied Analysis
, pp. 14
-
-
Li, F.-B.1
Li, M.2
Zheng, Q.3
-
17
-
-
70449527772
-
Fractional relaxation equations on Banach spaces
-
10.1016/j.aml.2009.08.019 2559456
-
Lizama C., Prado H., Fractional relaxation equations on Banach spaces. Applied Mathematics Letters 2010 23 2 137 142 10.1016/j.aml.2009.08.019 2559456
-
(2010)
Applied Mathematics Letters
, vol.23
, Issue.2
, pp. 137-142
-
-
Lizama, C.1
Prado, H.2
-
18
-
-
0000145521
-
On Mittag-Leffler-type functions in fractional evolution processes
-
10.1016/S0377-0427(00)00294-6 1765955
-
Mainardi F., Gorenflo R., On Mittag-Leffler-type functions in fractional evolution processes. Journal of Computational and Applied Mathematics 2000 118 1-2 283 299 10.1016/S0377-0427(00)00294-6 1765955
-
(2000)
Journal of Computational and Applied Mathematics
, vol.118
, Issue.1-2
, pp. 283-299
-
-
Mainardi, F.1
Gorenflo, R.2
-
19
-
-
33845348664
-
Reaction-diffusion systems and nonlinear waves
-
DOI 10.1007/s10509-006-9190-0
-
Saxena R. K., Mathai A. M., Haubold H. J., Reaction-diffusion systems and nonlinear waves. Astrophysics and Space Science 2006 305 3 297 303 (Pubitemid 44877997)
-
(2006)
Astrophysics and Space Science
, vol.305
, Issue.3
, pp. 297-303
-
-
Saxena, R.K.1
Mathai, A.M.2
Haubold, H.J.3
-
24
-
-
0038583810
-
Higher order abstract Cauchy problems: Their existence and uniqueness families
-
DOI 10.1112/S0024610702003794
-
Xiao T.-J., Liang J., Higher order abstract Cauchy problems: their existence and uniqueness families. Journal of the London Mathematical Society 2003 67 1 149 164 10.1112/S0024610702003794 1942417 (Pubitemid 36614398)
-
(2003)
Journal of the London Mathematical Society
, vol.67
, Issue.1
, pp. 149-164
-
-
Xiao, T.-J.1
Liang, J.2
-
26
-
-
84865546366
-
Abstract Volterra equations in locally convex spaces
-
Kostić M., Abstract Volterra equations in locally convex spaces. Science China Math 2012 55 9 1797 1825
-
(2012)
Science China Math
, vol.55
, Issue.9
, pp. 1797-1825
-
-
Kostić, M.1
-
32
-
-
33749997456
-
1-uniqueness of Fokker-Planck equations
-
DOI 10.1016/j.jfa.2006.04.020, PII S0022123606002011
-
Wu L., Zhang Y., A new topological approach to the L ∞ -uniqueness of operators and the L 1 -uniqueness of Fokker-Planck equations. Journal of Functional Analysis 2006 241 2 557 610 10.1016/j.jfa.2006.04.020 2271930 (Pubitemid 44567388)
-
(2006)
Journal of Functional Analysis
, vol.241
, Issue.2
, pp. 557-610
-
-
Wu, L.1
Zhang, Y.2
-
33
-
-
0347572102
-
Abstract Degenerate Cauchy Problems in Locally Convex Spaces
-
DOI 10.1006/jmaa.2000.7406, PII S0022247X00974067
-
Xiao T.-J., Liang J., Abstract degenerate Cauchy problems in locally convex spaces. Journal of Mathematical Analysis and Applications 2001 259 2 398 412 10.1006/jmaa.2000.7406 1842067 (Pubitemid 33652989)
-
(2001)
Journal of Mathematical Analysis and Applications
, vol.259
, Issue.2
, pp. 398-412
-
-
Liang, J.1
Xiao, T.-J.2
-
37
-
-
84959842537
-
Existence and uniqueness families for the abstract Cauchy problem
-
10.1112/jlms/s2-44.2.310 1136443
-
de Laubenfels R., Existence and uniqueness families for the abstract Cauchy problem. Journal of the London Mathematical Society 1991 44 2 310 338 10.1112/jlms/s2-44.2.310 1136443
-
(1991)
Journal of the London Mathematical Society
, vol.44
, Issue.2
, pp. 310-338
-
-
De Laubenfels, R.1
|