-
1
-
-
51749114885
-
Cooling, heating, generating power, and recovering waste heat with thermoelectric systems
-
Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science2008, 321, 1457-1461.
-
(2008)
Science
, vol.321
, pp. 1457-1461
-
-
Bell, L.E.1
-
2
-
-
38849174818
-
Complex thermoelectric materials
-
Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105-114.
-
(2008)
Nat. Mater.
, vol.7
, pp. 105-114
-
-
Snyder, G.J.1
Toberer, E.S.2
-
3
-
-
33645458327
-
Thermoelectric materials, phenomena, and applications: A bird's eye view
-
Tritt, T. M.; Subramanian, M. A. Thermoelectric materials, phenomena, and applications: A bird's eye view. MRS Bull. 2006, 31, 188-194.
-
(2006)
MRS Bull.
, vol.31
, pp. 188-194
-
-
Tritt, T.M.1
Subramanian, M.A.2
-
4
-
-
2142815781
-
Improved thermoelectric power factor in metal-based superlattices
-
Vashaee, D.; Shakouri, A. Improved thermoelectric power factor in metal-based superlattices. Phys. Rev. Lett. 2004, 92, 106103.
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 106103
-
-
Vashaee, D.1
Shakouri, A.2
-
5
-
-
33144473476
-
Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors
-
Kim, W.; Zide, J.; Gossard, A.; Klenov, D.; Stemmer, S.; Shakouri, A.; Majumdar, A. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 2006, 96, 045901.
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 045901
-
-
Kim, W.1
Zide, J.2
Gossard, A.3
Klenov, D.4
Stemmer, S.5
Shakouri, A.6
Majumdar, A.7
-
6
-
-
77950799840
-
Exploring resonance levels and nanostructuring in the PbTe-CdTe system and enhancement of the thermoelectric figure of merit
-
Ahn, K.; Han, M. K.; He, J. Q.; Androulakis, J.; Ballikaya, S.; Uher, C.; Dravid, V. P.; Kanatzidis, M. G. Exploring resonance levels and nanostructuring in the PbTe-CdTe system and enhancement of the thermoelectric figure of merit. J. Am. Chem. Soc. 2010, 132, 5227-5235.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 5227-5235
-
-
Ahn, K.1
Han, M.K.2
He, J.Q.3
Androulakis, J.4
Ballikaya, S.5
Uher, C.6
Dravid, V.P.7
Kanatzidis, M.G.8
-
7
-
-
78449286733
-
Water-processable polymer-nanocrystal hybrids for thermoelectrics
-
See, K. C.; Feser, J. P.; Chen, C. E.; Majumdar, A.; Urban, J. J.; Segalman, R. A. Water-processable polymer-nanocrystal hybrids for thermoelectrics. Nano Lett. 2010, 10, 4664-4667.
-
(2010)
Nano Lett.
, vol.10
, pp. 4664-4667
-
-
See, K.C.1
Feser, J.P.2
Chen, C.E.3
Majumdar, A.4
Urban, J.J.5
Segalman, R.A.6
-
8
-
-
80054041552
-
Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties
-
Jood, P.; Mehta, R. J.; Zhang, Y. L.; Peleckis, G.; Wang, X. L.; Siegel, R. W.; Borca-Tasciuc, T.; Dou, S. X.; Ramanath, G. Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. Nano Lett. 2011, 11, 4337-4342.
-
(2011)
Nano Lett.
, vol.11
, pp. 4337-4342
-
-
Jood, P.1
Mehta, R.J.2
Zhang, Y.L.3
Peleckis, G.4
Wang, X.L.5
Siegel, R.W.6
Borca-Tasciuc, T.7
Dou, S.X.8
Ramanath, G.9
-
9
-
-
84859699467
-
Flexible nanocrystal-coated glass fibers for high-performance thermoelectric energy harvesting
-
Liang, D.; Yang, H.; Finefrock, S. W.; Wu, Y. Flexible nanocrystal-coated glass fibers for high-performance thermoelectric energy harvesting. Nano Lett. 2012, 12, 2140-2145.
-
(2012)
Nano Lett.
, vol.12
, pp. 2140-2145
-
-
Liang, D.1
Yang, H.2
Finefrock, S.W.3
Wu, Y.4
-
10
-
-
61649086666
-
Thermoelectric behavior of segregated-network polymer nanocomposites
-
Yu, C.; Kim, Y. S.; Kim, D.; Grunlan, J. C. Thermoelectric behavior of segregated-network polymer nanocomposites. Nano Lett. 2008, 8, 4428-4432.
-
(2008)
Nano Lett.
, vol.8
, pp. 4428-4432
-
-
Yu, C.1
Kim, Y.S.2
Kim, D.3
Grunlan, J.C.4
-
11
-
-
78649909190
-
Toward self-powered sensor networks
-
Wang, Z. L. Toward self-powered sensor networks. Nano Today2010, 5, 512-514.
-
(2010)
Nano Today
, vol.5
, pp. 512-514
-
-
Wang, Z.L.1
-
12
-
-
77952293658
-
Self-powered nanowire devices
-
Xu, S.; Qin, Y.; Xu, C.; Wei, Y. G.; Yang, R.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366-373.
-
(2010)
Nat. Nanotechnol.
, vol.5
, pp. 366-373
-
-
Xu, S.1
Qin, Y.2
Xu, C.3
Wei, Y.G.4
Yang, R.5
Wang, Z.L.6
-
13
-
-
80052209748
-
Self-powered environmental sensor system driven by nanogenerators
-
Lee, M.; Bae, J.; Lee, J.; Lee, C. S.; Hong, S.; Wang, Z. L. Self-powered environmental sensor system driven by nanogenerators. Energy Environ. Sci. 2011, 4, 3359-3363.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 3359-3363
-
-
Lee, M.1
Bae, J.2
Lee, J.3
Lee, C.S.4
Hong, S.5
Wang, Z.L.6
-
14
-
-
84864255530
-
Strain-gated piezotronic transistors based on vertical zinc oxide nanowires
-
Han, W. H.; Zhou, Y. S; Zhang, Y.; Chen, C. Y.; Lin, L.; Wang, X.; Wang, S. H.; Wang, Z. L. Strain-gated piezotronic transistors based on vertical zinc oxide nanowires. ACS nano2012, 6, 3760-3766.
-
(2012)
ACS Nano
, vol.6
, pp. 3760-3766
-
-
Han, W.H.1
Zhou, Y.S.2
Zhang, Y.3
Chen, C.Y.4
Lin, L.5
Wang, X.6
Wang, S.H.7
Wang, Z.L.8
-
15
-
-
84859154815
-
3 nanowire arrays: From controlled growth by pulsed laser deposition to piezopotential measurements
-
3 nanowire arrays: From controlled growth by pulsed laser deposition to piezopotential measurements. ACS nano2012, 6, 2826-2832.
-
(2012)
ACS Nano
, vol.6
, pp. 2826-2832
-
-
Chen, Y.Z.1
Liu, T.H.2
Chen, C.Y.3
Liu, C.H.4
Chen, S.Y.5
Wu, W.W.6
Wang, Z.L.7
He, J.H.8
Chu, Y.H.9
Chueh, Y.L.10
-
16
-
-
84864271008
-
Vertically aligned CdSe nanowire arrays for energy harvesting and piezotronic devices
-
Zhou, Y. S.; Wang, K.; Han, W. H.; Rai, S. C.; Zhang, Y.; Ding, Y.; Pan, C. F.; Zhang, F.; Zhou, W. L.; Wang, Z. L. Vertically aligned CdSe nanowire arrays for energy harvesting and piezotronic devices. ACS nano2012, 6, 6478-6482.
-
(2012)
ACS Nano
, vol.6
, pp. 6478-6482
-
-
Zhou, Y.S.1
Wang, K.2
Han, W.H.3
Rai, S.C.4
Zhang, Y.5
Ding, Y.6
Pan, C.F.7
Zhang, F.8
Zhou, W.L.9
Wang, Z.L.10
-
17
-
-
84864209293
-
Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices
-
Wu, W. W.; Bai, S.; Yuan, M. M.; Qin, Y.; Wang, Z. L.; Jing, T. Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS nano2012, 6, 6231-6235.
-
(2012)
ACS Nano
, vol.6
, pp. 6231-6235
-
-
Wu, W.W.1
Bai, S.2
Yuan, M.M.3
Qin, Y.4
Wang, Z.L.5
Jing, T.6
-
18
-
-
84863835431
-
Magnetic force driven nanogenerators as a noncontact energy harvester and sensor
-
Cui, N. Y.; Wu, W. W.; Zhao, Y.; Bai, S.; Meng, L. X.; Qin, Y.; Wang, Z. L. Magnetic force driven nanogenerators as a noncontact energy harvester and sensor. Nano Lett. 2012, 12, 3701-3705.
-
(2012)
Nano Lett.
, vol.12
, pp. 3701-3705
-
-
Cui, N.Y.1
Wu, W.W.2
Zhao, Y.3
Bai, S.4
Meng, L.X.5
Qin, Y.6
Wang, Z.L.7
-
19
-
-
58349098217
-
Thermoelectric power measurements of wide band gap semiconducting nanowires
-
Lee, C. H.; Yi, G. C.; Zuev, Y. M.; Kim, P. Thermoelectric power measurements of wide band gap semiconducting nanowires. Appl. Phys. Lett. 2009, 94, 022106.
-
(2009)
Appl. Phys. Lett
, vol.94
, pp. 022106
-
-
Lee, C.H.1
Yi, G.C.2
Zuev, Y.M.3
Kim, P.4
-
20
-
-
84864213088
-
Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic-inorganic semiconductor interface
-
He, M.; Ge, J.; Lin, Z. Q.; Feng, X. H.; Wang, X. W.; Lu, H. B.; Yang, Y. L.; Qiu, F. Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic-inorganic semiconductor interface. Energy Environ. Sci. 2012, 5, 8351-8358.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 8351-8358
-
-
He, M.1
Ge, J.2
Lin, Z.Q.3
Feng, X.H.4
Wang, X.W.5
Lu, H.B.6
Yang, Y.L.7
Qiu, F.8
|