메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1351-1356

Temporal association rule mining for the preventive diagnosis of onboard subsystems within floating train data framework

Author keywords

[No Author keywords available]

Indexed keywords

COMMUNICATIONS SYSTEMS; DATA FRAMEWORK; INTELLIGENT SENSORS; RAILWAY TRANSPORTATION; SEQUENTIAL DATA MINING; SPATIO-TEMPORAL DATA; TELECOMMUNICATION TECHNOLOGIES; TEMPORAL ASSOCIATION; TEMPORAL ASSOCIATION RULE;

EID: 84871232000     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ITSC.2012.6338698     Document Type: Conference Paper
Times cited : (11)

References (30)
  • 1
    • 84871203517 scopus 로고    scopus 로고
    • Onboard diagnosis transforms maintenance: Alstom's onboard diagnosis system trantracer is changing the way maintenance is planned and conducted
    • Onboard diagnosis transforms maintenance: Alstom's onboard diagnosis system trantracer is changing the way maintenance is planned and conducted. International Railway Journal, 49:37-40, 2009.
    • (2009) International Railway Journal , vol.49 , pp. 37-40
  • 3
    • 84871192266 scopus 로고    scopus 로고
    • Condition monitoring of railway turnouts and other track components using machine vision trb 11-1442
    • C. Barkan and N. Ahuja. Condition monitoring of railway turnouts and other track components using machine vision trb 11-1442. Transportation Research Record, (217):1-17, 2010.
    • (2010) Transportation Research Record , Issue.217 , pp. 1-17
    • Barkan, C.1    Ahuja, N.2
  • 4
    • 79960454731 scopus 로고    scopus 로고
    • Railway wheel-flat detection and measurement by ultrasound
    • J. Brizuela, C. Fritsch, and A. Ibez. Railway wheel-flat detection and measurement by ultrasound. Transportation Research, 19(1):975-984, 2011.
    • (2011) Transportation Research , vol.19 , Issue.1 , pp. 975-984
    • Brizuela, J.1    Fritsch, C.2    Ibez, A.3
  • 5
    • 81155155580 scopus 로고    scopus 로고
    • Fuzzy data mining for time-series data
    • C.H. Chen, T.P. Hong, and V.S. Tseng. Fuzzy data mining for time-series data. Appl. Soft Comput., 12(1):536-542, 2012.
    • (2012) Appl. Soft Comput. , vol.12 , Issue.1 , pp. 536-542
    • Chen, C.H.1    Hong, T.P.2    Tseng, V.S.3
  • 6
    • 39049085335 scopus 로고    scopus 로고
    • Fault detection and diagnosis for railway track circuits using neuro-fuzzy systems
    • J. Chen, C. Roberts, and P Weston. Fault detection and diagnosis for railway track circuits using neuro-fuzzy systems. Control Engineering Practice, 16:585-596, 2008.
    • (2008) Control Engineering Practice , vol.16 , pp. 585-596
    • Chen, J.1    Roberts, C.2    Weston, P.3
  • 9
    • 77956316818 scopus 로고    scopus 로고
    • Mining railway delay dependencies in large-scale real-world delay data
    • Robust and Online Large-Scale Optimization
    • H. Flier, R. Gelashvili, T. Graffagnino, and M. Nunkesser. Mining railway delay dependencies in large-scale real-world delay data. Robust and Online Large-Scale Optimization, Lecture Notes in Computer Science, 5868:354-368, 2009.
    • (2009) Lecture Notes in Computer Science , vol.5868 , pp. 354-368
    • Flier, H.1    Gelashvili, R.2    Graffagnino, T.3    Nunkesser, M.4
  • 10
    • 52449096976 scopus 로고    scopus 로고
    • Determining significance of pairwise co-occurrences of events in bursty sequences
    • August
    • N. Haiminen, H. Mannila, and E. Terzi. Determining significance of pairwise co-occurrences of events in bursty sequences. BMC Bioinformatics, 9(1), August 2008.
    • (2008) BMC Bioinformatics , vol.9 , Issue.1
    • Haiminen, N.1    Mannila, H.2    Terzi, E.3
  • 11
    • 0036796540 scopus 로고    scopus 로고
    • Predicting transcription factor synergism
    • S. Hannenhalli and S. Levy. Predicting transcription factor synergism. Nucleic Acids Res, 30(19), 2002.
    • (2002) Nucleic Acids Res , vol.30 , Issue.19
    • Hannenhalli, S.1    Levy, S.2
  • 15
    • 0034783060 scopus 로고    scopus 로고
    • Enrichment of regulatory signals in conserved non-coding genomic sequence
    • October
    • S. Levy, S. Hannenhalli, and C. Workman. Enrichment of regulatory signals in conserved non-coding genomic sequence. Bioinformatics, 17(10):871-877, October 2001.
    • (2001) Bioinformatics , vol.17 , Issue.10 , pp. 871-877
    • Levy, S.1    Hannenhalli, S.2    Workman, C.3
  • 17
    • 0034136492 scopus 로고    scopus 로고
    • Discovering hidden time patterns in behavior: T-patterns and their detection
    • S. Magnusson. Discovering hidden time patterns in behavior: T-patterns and their detection. Behavior Research Methods, Instruments, & Computers, 32s:93-110, 2000.
    • (2000) Behavior Research Methods, Instruments, & Computers , vol.32 S , pp. 93-110
    • Magnusson, S.1
  • 19
    • 67349199567 scopus 로고    scopus 로고
    • Exploiting temporal statistics for events analysis and understanding
    • C. Micheloni, L. Snidaro, and G.L. Foresti. Exploiting temporal statistics for events analysis and understanding. Image and Vision Computing, 27(10):1459-1469, 2009.
    • (2009) Image and Vision Computing , vol.27 , Issue.10 , pp. 1459-1469
    • Micheloni, C.1    Snidaro, L.2    Foresti, G.L.3
  • 20
    • 77956228177 scopus 로고    scopus 로고
    • Application of association rules in iranian railways (rai) accident data analysis
    • A. Mirabadi and S. Sharifian. Application of association rules in iranian railways (rai) accident data analysis. Safety Science, 48(10):1427-1435, 2010.
    • (2010) Safety Science , vol.48 , Issue.10 , pp. 1427-1435
    • Mirabadi, A.1    Sharifian, S.2
  • 21
    • 52049083428 scopus 로고    scopus 로고
    • Combined use of sensor data and structural knowledge processed by bayesian network: Application to a railway diagnosis aid scheme
    • L. Oukhellou, E. Côme, L. Bouillaut, and P. Aknin. Combined use of sensor data and structural knowledge processed by bayesian network: Application to a railway diagnosis aid scheme. Transportation Research Part C: Emerging Technologies, 16:755-767, 2008.
    • (2008) Transportation Research Part C: Emerging Technologies , vol.16 , pp. 755-767
    • Oukhellou, L.1    Côme, E.2    Bouillaut, L.3    Aknin, P.4
  • 22
    • 26944488466 scopus 로고    scopus 로고
    • Predicting inhabitant action using action and task models with application to smart homes
    • S.P. Rao and D. Cook. Predicting inhabitant action using action and task models with application to smart homes. International Journal on Artificial Intelligence Tools, 13:81-100, 2004.
    • (2004) International Journal on Artificial Intelligence Tools , vol.13 , pp. 81-100
    • Rao, S.P.1    Cook, D.2
  • 24
    • 77957220418 scopus 로고    scopus 로고
    • T-patterns revisited: Mining for temporal patterns in sensor data
    • A.A. Salah, E. Pauwels, R. Tavenard, and T. Gevers. T-patterns revisited: Mining for temporal patterns in sensor data. Sensors, 10(8):7496-7513, 2010.
    • (2010) Sensors , vol.10 , Issue.8 , pp. 7496-7513
    • Salah, A.A.1    Pauwels, E.2    Tavenard, R.3    Gevers, T.4
  • 27
    • 84871243384 scopus 로고    scopus 로고
    • Using floating car data for traffic state estimation in signalized urban networks
    • H. Van Zuylen, Y. Chen, and F. Zheng. Using floating car data for traffic state estimation in signalized urban networks. IWTDCS Barcelona 2008, 2008.
    • (2008) IWTDCS Barcelona 2008
    • Van Zuylen, H.1    Chen, Y.2    Zheng, F.3
  • 29
    • 0034826102 scopus 로고    scopus 로고
    • SPADE: An efficient algorithm for mining frequent sequences
    • M.J. Zaki. SPADE: An efficient algorithm for mining frequent sequences. Machine Learning Journal, 42:31-60, 2001.
    • (2001) Machine Learning Journal , vol.42 , pp. 31-60
    • Zaki, M.J.1
  • 30
    • 0034457239 scopus 로고    scopus 로고
    • Planmine: Predicting plan failures using sequence mining
    • M.J. Zaki, N. Lesh, and M. Ogihara. Planmine: Predicting plan failures using sequence mining. Artificial Intelligence Revue, 14:421-446, 2000.
    • (2000) Artificial Intelligence Revue , vol.14 , pp. 421-446
    • Zaki, M.J.1    Lesh, N.2    Ogihara, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.