메뉴 건너뛰기




Volumn 48, Issue 10, 2010, Pages 1427-1435

Application of association rules in Iranian Railways (RAI) accident data analysis

Author keywords

Accident analysis; Association rules; CRISP reference model; Data mining; Iranian Railways (RAI); Railway accidents

Indexed keywords

ACCIDENT ANALYSIS; ACCIDENT CONDITIONS; ACCIDENT DATA; ACCIDENT FACTORS; CLEMENTINE; CRISP-DM; DATA MINING TECHNIQUES; HUMAN ERRORS; IRANIAN RAILWAYS (RAI); RAILWAY ACCIDENTS; REFERENCE MODELS; SAFETY PROCEDURE; SAFETY SYSTEM; SOFTWARE TOOL;

EID: 77956228177     PISSN: 09257535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ssci.2010.06.006     Document Type: Article
Times cited : (90)

References (22)
  • 1
    • 77956225257 scopus 로고    scopus 로고
    • Knowledge discovery in road accidents database - integration of visual and automatic data mining methods
    • Abugessaisa I. Knowledge discovery in road accidents database - integration of visual and automatic data mining methods. International Journal of Public Information Systems 2008, 1:59-85.
    • (2008) International Journal of Public Information Systems , vol.1 , pp. 59-85
    • Abugessaisa, I.1
  • 2
    • 64849103766 scopus 로고    scopus 로고
    • Kernel density estimation and K-means clustering to profile road accident hotspots. Accident Analysis and Prevention. doi:10.1016/j.aap.2008.12.014
    • Anderson, T.K., 2009. Kernel density estimation and K-means clustering to profile road accident hotspots. Accident Analysis and Prevention. doi:10.1016/j.aap.2008.12.014.
    • (2009)
    • Anderson, T.K.1
  • 3
    • 85009571726 scopus 로고    scopus 로고
    • Data mining applications in transportation engineering
    • (Vilnius: Technika)
    • Barai S.K. Data mining applications in transportation engineering. Transport 2003, 18(5):216-223. (Vilnius: Technika).
    • (2003) Transport , vol.18 , Issue.5 , pp. 216-223
    • Barai, S.K.1
  • 4
    • 33745753402 scopus 로고    scopus 로고
    • Analysis of traffic injury severity: an application of non-parametric classification tree techniques
    • Chang L.Y., Wang H.Y. Analysis of traffic injury severity: an application of non-parametric classification tree techniques. Accident Analysis and Prevention 2006, 38:1019-1027.
    • (2006) Accident Analysis and Prevention , vol.38 , pp. 1019-1027
    • Chang, L.Y.1    Wang, H.Y.2
  • 7
    • 23844506552 scopus 로고    scopus 로고
    • Traffic accident analysis using machine learning paradigms
    • Chong M., Abraham A., Paprzycki M. Traffic accident analysis using machine learning paradigms. Informatica 2005, 29:89-98.
    • (2005) Informatica , vol.29 , pp. 89-98
    • Chong, M.1    Abraham, A.2    Paprzycki, M.3
  • 8
    • 46149097412 scopus 로고    scopus 로고
    • Traffic accident segmentation by means of latent class clustering
    • Depaire B., Wets G., Vanhoof K. Traffic accident segmentation by means of latent class clustering. Accident Analysis and Prevention 2008, 40:1257-1266.
    • (2008) Accident Analysis and Prevention , vol.40 , pp. 1257-1266
    • Depaire, B.1    Wets, G.2    Vanhoof, K.3
  • 14
    • 15744372838 scopus 로고    scopus 로고
    • A neural network approach for railway safety prediction. In: 2004 IEEE International Conference on Systems, Man and Cybemetics.
    • Nefti, S., Oussalah, M., 2004. A neural network approach for railway safety prediction. In: 2004 IEEE International Conference on Systems, Man and Cybemetics.
    • (2004)
    • Nefti, S.1    Oussalah, M.2
  • 15
    • 77956232229 scopus 로고    scopus 로고
    • RAI,
    • RAI, 2006. http://www.rai.ir/.
    • (2006)
  • 16
    • 0037290189 scopus 로고    scopus 로고
    • Data fusion, ensemble and clustering to improve the classification accuracy for the severity of road traffic accidents in Korea
    • Sohn S.Y., Lee S.H. Data fusion, ensemble and clustering to improve the classification accuracy for the severity of road traffic accidents in Korea. Safety Science 2003, 41:1-14.
    • (2003) Safety Science , vol.41 , pp. 1-14
    • Sohn, S.Y.1    Lee, S.H.2
  • 17
    • 33646373410 scopus 로고    scopus 로고
    • Using data mining to improve traffic safety programs
    • (q Emerald Group Publishing Limited)
    • Solomon S., Nguyen H., Liebowitz J., Agresti W. Using data mining to improve traffic safety programs. Industrial Management & Data Systems 2006, 106(5):621-643. (q Emerald Group Publishing Limited).
    • (2006) Industrial Management & Data Systems , vol.106 , Issue.5 , pp. 621-643
    • Solomon, S.1    Nguyen, H.2    Liebowitz, J.3    Agresti, W.4
  • 18
    • 34848909556 scopus 로고    scopus 로고
    • Diagnostic analysis of the logistic model for pedestrian injury severity in traffic crashes
    • Sze N.N., Wong S.C. Diagnostic analysis of the logistic model for pedestrian injury severity in traffic crashes. Accident Analysis and Prevention 2007, 39:1267-1278.
    • (2007) Accident Analysis and Prevention , vol.39 , pp. 1267-1278
    • Sze, N.N.1    Wong, S.C.2
  • 19
    • 77956229353 scopus 로고    scopus 로고
    • Rule mining and classification of road traffic accidents using adaptive regression trees
    • Tesema T.B., Abraham A., Grosan C. Rule mining and classification of road traffic accidents using adaptive regression trees. International Journal of Simulation 2005, 6(10-11).
    • (2005) International Journal of Simulation , vol.6 , Issue.10-11
    • Tesema, T.B.1    Abraham, A.2    Grosan, C.3
  • 20
    • 77956225644 scopus 로고    scopus 로고
    • Update and improvement of the traffic accident data collection procedures in Spain: the METRAS method of sequencing accident events. In: Proceedings of the 4th IRTAD Conference. September, 2009, Korea.
    • Tormo, M.T., Sanmartin J., Pace J., 2009. Update and improvement of the traffic accident data collection procedures in Spain: the METRAS method of sequencing accident events. In: Proceedings of the 4th IRTAD Conference. September, 2009, Korea.
    • (2009)
    • Tormo, M.T.1    Sanmartin, J.2    Pace, J.3
  • 21
    • 0142058110 scopus 로고    scopus 로고
    • Biases in incident reporting databases: an empirical study in the chemical process industry
    • Van der schaaf T., Kanse L. Biases in incident reporting databases: an empirical study in the chemical process industry. Journal of Safety Science 2004, 42(1):57-67.
    • (2004) Journal of Safety Science , vol.42 , Issue.1 , pp. 57-67
    • Van der schaaf, T.1    Kanse, L.2
  • 22
    • 34548502433 scopus 로고    scopus 로고
    • Predicting motor vehicle collisions using Bayesian neural network models: an empirical analysis
    • Xie Y., Lord D., Zhang Y. Predicting motor vehicle collisions using Bayesian neural network models: an empirical analysis. Accident Analysis and Prevention 2007, 39:922-933.
    • (2007) Accident Analysis and Prevention , vol.39 , pp. 922-933
    • Xie, Y.1    Lord, D.2    Zhang, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.