-
1
-
-
84880468771
-
Mining newsgroups using networks arising from social behavior
-
ACM
-
R. Agrawal, S. Rajagopalan, R. Srikant, and Y. Xu. Mining newsgroups using networks arising from social behavior. In WWW '03, pages 529-535. ACM.
-
WWW '03
, pp. 529-535
-
-
Agrawal, R.1
Rajagopalan, S.2
Srikant, R.3
Xu, Y.4
-
2
-
-
84871096375
-
-
The power of negative thinking: Exploiting label disagreement in the min-cut classification framework. Companion volume: Posters
-
M. Bansal, C. Cardie, and L. Lee. The power of negative thinking: Exploiting label disagreement in the min-cut classification framework. COLING'08: Companion volume: Posters, pages 13-16.
-
COLING'08
, pp. 13-16
-
-
Bansal, M.1
Cardie, C.2
Lee, L.3
-
5
-
-
9444244198
-
Mining the peanut gallery: Opinion extraction and semantic classification of product reviews
-
ACM
-
K. Dave, S. Lawrence, and D. Pennock. Mining the peanut gallery: opinion extraction and semantic classification of product reviews. In WWW'03, pages 519-528. ACM.
-
WWW'03
, pp. 519-528
-
-
Dave, K.1
Lawrence, S.2
Pennock, D.3
-
6
-
-
84871037825
-
Identifying agreement and disagreement in conversational speech: Use of bayesian networks to model pragmatic dependencies
-
M. Galley, K. McKeown, J. Hirschberg, and E. Shriberg. Identifying agreement and disagreement in conversational speech: use of bayesian networks to model pragmatic dependencies. In ACL '04.
-
ACL '04
-
-
Galley, M.1
McKeown, K.2
Hirschberg, J.3
Shriberg, E.4
-
7
-
-
85081790022
-
Seeing stars when there aren't many stars: Graph-based semi-supervised learning for sentiment categorization
-
ACL
-
A. Goldberg and X. Zhu. Seeing stars when there aren't many stars: graph-based semi-supervised learning for sentiment categorization. In TextGraphs-1, pages 45-52. ACL, 2006.
-
(2006)
TextGraphs-1
, pp. 45-52
-
-
Goldberg, A.1
Zhu, X.2
-
8
-
-
85026972772
-
Probabilistic latent semantic indexing
-
T. Hofmann. Probabilistic latent semantic indexing. In SIGIR'99.
-
SIGIR'99
-
-
Hofmann, T.1
-
9
-
-
85107227165
-
Determining the sentiment of opinions
-
ACL
-
S. Kim and E. Hovy. Determining the sentiment of opinions. In COLLING'04, pages 1367-1373. ACL, 2004.
-
(2004)
COLLING'04
, pp. 1367-1373
-
-
Kim, S.1
Hovy, E.2
-
11
-
-
80053413369
-
-
Support or oppose?: classifying positions in online debates from reply activities and opinion expressions. Posters
-
A. Murakami and R. Raymond. Support or oppose?: classifying positions in online debates from reply activities and opinion expressions. In COLING '10: Posters, pages 869-875.
-
COLING '10
, pp. 869-875
-
-
Murakami, A.1
Raymond, R.2
-
12
-
-
84859895244
-
Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales
-
Association for Computational Linguistics
-
B. Pang and L. Lee. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In ACL'05, pages 115-124. Association for Computational Linguistics.
-
ACL'05
, pp. 115-124
-
-
Pang, B.1
Lee, L.2
-
13
-
-
85141803251
-
Thumbs up?: Sentiment classification using machine learning techniques
-
Association for Computational Linguistics
-
B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up?: sentiment classification using machine learning techniques. In ACL'02, pages 79-86. Association for Computational Linguistics, 2002.
-
(2002)
ACL'02
, pp. 79-86
-
-
Pang, B.1
Lee, L.2
Vaithyanathan, S.3
-
14
-
-
84859035759
-
Contrasting opposing views of news articles on contentious issues
-
S. Park, K. S. Lee, and J. Song. Contrasting opposing views of news articles on contentious issues. In ACL'11, pages 340-349, 2011.
-
(2011)
ACL'11
, pp. 340-349
-
-
Park, S.1
Lee, K.S.2
Song, J.3
-
15
-
-
84859901716
-
Recognizing stances in online debates
-
S. Somasundaran and J. Wiebe. Recognizing stances in online debates. In ACL/AFNLP'09, pages 226-234.
-
ACL/AFNLP'09
, pp. 226-234
-
-
Somasundaran, S.1
Wiebe, J.2
-
16
-
-
80052688357
-
Recognizing stances in ideological on-line debates
-
Association for Computational Linguistics
-
S. Somasundaran and J. Wiebe. Recognizing stances in ideological on-line debates. In CAAGET'10, NAACL-HLT'10, pages 116-124. Association for Computational Linguistics, 2010.
-
(2010)
CAAGET'10, NAACL-HLT'10
, pp. 116-124
-
-
Somasundaran, S.1
Wiebe, J.2
-
17
-
-
80053357527
-
Get out the vote: Determining support or opposition from Congressional floor-debate transcripts
-
M. Thomas, B. Pang, and L. Lee. Get out the vote: Determining support or opposition from Congressional floor-debate transcripts. In Proceedings of EMNLP, pages 327-335, 2006.
-
(2006)
Proceedings of EMNLP
, pp. 327-335
-
-
Thomas, M.1
Pang, B.2
Lee, L.3
-
19
-
-
80053250358
-
Multi-level structured models for document-level sentiment classification
-
Association for Computational Linguistics
-
A. Yessenalina, Y. Yue, and C. Cardie. Multi-level structured models for document-level sentiment classification. In EMNLP'10, pages 1046-1056. Association for Computational Linguistics.
-
EMNLP'10
, pp. 1046-1056
-
-
Yessenalina, A.1
Yue, Y.2
Cardie, C.3
|