-
2
-
-
1542287501
-
Modeling annotated data
-
D. M. Blei and M. I. Jordan. Modeling annotated data. In SIGIR, pages 127-134, 2003.
-
(2003)
SIGIR
, pp. 127-134
-
-
Blei, D.M.1
Jordan, M.I.2
-
4
-
-
52449116403
-
A correlated topic model of science
-
D. M. Blei and J. D. Lafferty. A correlated topic model of science. AAS, 1(1):17-35, 2007.
-
(2007)
AAS
, vol.1
, Issue.1
, pp. 17-35
-
-
Blei, D.M.1
Lafferty, J.D.2
-
6
-
-
77951165602
-
Hierarchical bayesian models for collaborative tagging systems
-
M. Bundschus, S. Yu, V. Tresp, A. Rettinger, M. Dejori, and H.-P. Kriegel. Hierarchical bayesian models for collaborative tagging systems. In ICDM, pages 728-733, 2009.
-
(2009)
ICDM
, pp. 728-733
-
-
Bundschus, M.1
Yu, S.2
Tresp, V.3
Rettinger, A.4
Dejori, M.5
Kriegel, H.-P.6
-
7
-
-
0032270694
-
The use of MMR, diversity-based reranking for reordering documents and producing summaries
-
J. Carbonell and J. Goldstein. The use of MMR, diversity-based reranking for reordering documents and producing summaries. In SIGIR, pages 335-336, 1998.
-
(1998)
SIGIR
, pp. 335-336
-
-
Carbonell, J.1
Goldstein, J.2
-
8
-
-
70349682438
-
A survey of web clustering engines
-
C. Carpineto, S. Osinski, G. Romano, and D. Weiss. A survey of web clustering engines. ACM Comput. Surv., 41(3):17:1-17:38, 2009.
-
(2009)
ACM Comput. Surv.
, vol.41
, Issue.3
-
-
Carpineto, C.1
Osinski, S.2
Romano, G.3
Weiss, D.4
-
9
-
-
84866630031
-
Short text classification improved by learning multi-granularity topics
-
M. Chen, X. Jin, and D. Shen. Short text classification improved by learning multi-granularity topics. In IJCAI, pages 1776-1781, 2011.
-
(2011)
IJCAI
, pp. 1776-1781
-
-
Chen, M.1
Jin, X.2
Shen, D.3
-
10
-
-
84860866638
-
Multi-objective ranking of comments on web
-
O. Dalal, S. H. Sengemedu, and S. Sanyal. Multi-objective ranking of comments on web. In WWW, pages 419-428, 2012.
-
(2012)
WWW
, pp. 419-428
-
-
Dalal, O.1
Sengemedu, S.H.2
Sanyal, S.3
-
11
-
-
9444244198
-
Mining the peanut gallery: Opinion extraction and semantic classification of product reviews
-
K. Dave, S. Lawrence, and D. M. Pennock. Mining the peanut gallery: opinion extraction and semantic classification of product reviews. In WWW, pages 519-528, 2003.
-
(2003)
WWW
, pp. 519-528
-
-
Dave, K.1
Lawrence, S.2
Pennock, D.M.3
-
12
-
-
1842788824
-
Finding scientific topics
-
T. L. Griffiths and M. Steyvers. Finding scientific topics. PNAS, 101(suppl. 1):5228-5235, 2004.
-
(2004)
PNAS
, vol.101
, Issue.SUPPL. 1
, pp. 5228-5235
-
-
Griffiths, T.L.1
Steyvers, M.2
-
14
-
-
57349113043
-
Comments-oriented document summarization: Understanding documents with readers' feedback
-
M. Hu, A. Sun, and E.-P. Lim. Comments-oriented document summarization: understanding documents with readers' feedback. In SIGIR, pages 291-298, 2008.
-
(2008)
SIGIR
, pp. 291-298
-
-
Hu, M.1
Sun, A.2
Lim, E.-P.3
-
15
-
-
74549114844
-
Exploiting internal and external semantics for the clustering of short texts using world knowledge
-
ACM
-
X. Hu, N. Sun, C. Zhang, and T.-S. Chua. Exploiting internal and external semantics for the clustering of short texts using world knowledge. In CIKM, pages 919-928. ACM, 2009.
-
(2009)
CIKM
, pp. 919-928
-
-
Hu, X.1
Sun, N.2
Zhang, C.3
Chua, T.-S.4
-
16
-
-
78650986821
-
Content without context is meaningless
-
R. Jain and P. Sinha. Content without context is meaningless. In ACM Multimedia, pages 1259-1268, 2010.
-
(2010)
ACM Multimedia
, pp. 1259-1268
-
-
Jain, R.1
Sinha, P.2
-
17
-
-
83055191296
-
Transferring topical knowledge from auxiliary long texts for short text clustering
-
O. Jin, N. N. Liu, K. Zhao, Y. Yu, and Q. Yang. Transferring topical knowledge from auxiliary long texts for short text clustering. In CIKM, pages 775-784, 2011.
-
(2011)
CIKM
, pp. 775-784
-
-
Jin, O.1
Liu, N.N.2
Zhao, K.3
Yu, Y.4
Yang, Q.5
-
18
-
-
79952432020
-
Aspect and sentiment unification model for online review analysis
-
Y. Jo and A. H. Oh. Aspect and sentiment unification model for online review analysis. In WSDM, pages 815-824, 2011.
-
(2011)
WSDM
, pp. 815-824
-
-
Jo, Y.1
Oh, A.H.2
-
19
-
-
84858045423
-
Comment spam detection by sequence mining
-
R. Kant, S. H. Sengamedu, and K. S. Kumar. Comment spam detection by sequence mining. In WSDM, pages 183-192, 2012.
-
(2012)
WSDM
, pp. 183-192
-
-
Kant, R.1
Sengamedu, S.H.2
Kumar, K.S.3
-
21
-
-
79955137805
-
Analyzing and predicting community preference of socially generated metadata: A case study on comments in the digg community
-
E. Khabiri, C.-F. Hsu, and J. Caverlee. Analyzing and predicting community preference of socially generated metadata: A case study on comments in the digg community. In ICWSM, 2009.
-
(2009)
ICWSM
-
-
Khabiri, E.1
Hsu, C.-F.2
Caverlee, J.3
-
22
-
-
74849120851
-
Joint sentiment/topic model for sentiment analysis
-
C. Lin and Y. He. Joint sentiment/topic model for sentiment analysis. In CIKM, pages 375-384, 2009.
-
(2009)
CIKM
, pp. 375-384
-
-
Lin, C.1
He, Y.2
-
23
-
-
77956217641
-
The topic-perspective model for social tagging systems
-
C. Lu, X. Hu, X. Chen, J.-R. Park, T. He, and Z. Li. The topic-perspective model for social tagging systems. In KDD, pages 683-692, 2010.
-
(2010)
KDD
, pp. 683-692
-
-
Lu, C.1
Hu, X.2
Chen, X.3
Park, J.-R.4
He, T.5
Li, Z.6
-
24
-
-
34247336908
-
Ht06, tagging paper, taxonomy, flickr, academic article, to read
-
C. Marlow, M. Naaman, D. Boyd, and M. Davis. Ht06, tagging paper, taxonomy, flickr, academic article, to read. In ACM HyperText'06, pages 31-40, 2006.
-
(2006)
ACM HyperText'06
, pp. 31-40
-
-
Marlow, C.1
Naaman, M.2
Boyd, D.3
Davis, M.4
-
25
-
-
57349152312
-
Topic modeling with network regularization
-
Q. Mei, D. Cai, D. Zhang, and C. Zhai. Topic modeling with network regularization. In WWW, pages 101-110, 2008.
-
(2008)
WWW
, pp. 101-110
-
-
Mei, Q.1
Cai, D.2
Zhang, D.3
Zhai, C.4
-
27
-
-
57349117605
-
Learning to classify short and sparse text & web with hidden topics from large-scale data collections
-
ACM
-
X. H. Phan, M. L. Nguyen, and S. Horiguchi. Learning to classify short and sparse text & web with hidden topics from large-scale data collections. In WWW, pages 91-100. ACM, 2008.
-
(2008)
WWW
, pp. 91-100
-
-
Phan, X.H.1
Nguyen, M.L.2
Horiguchi, S.3
-
28
-
-
33745451385
-
The author-topic model for authors and documents
-
AUAI Press
-
M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth. The author-topic model for authors and documents. In UAI, pages 487-494. AUAI Press, 2004.
-
(2004)
UAI
, pp. 487-494
-
-
Rosen-Zvi, M.1
Griffiths, T.2
Steyvers, M.3
Smyth, P.4
-
29
-
-
34250638291
-
A web-based kernel function for measuring the similarity of short text snippets
-
M. Sahami and T. D. Heilman. A web-based kernel function for measuring the similarity of short text snippets. In WWW, pages 377-386, 2006.
-
(2006)
WWW
, pp. 377-386
-
-
Sahami, M.1
Heilman, T.D.2
-
30
-
-
84860870468
-
Leveraging user comments for aesthetic aware image search reranking
-
J. San Pedro, T. Yeh, and N. Oliver. Leveraging user comments for aesthetic aware image search reranking. In WWW, pages 439-448, 2012.
-
(2012)
WWW
, pp. 439-448
-
-
San Pedro, J.1
Yeh, T.2
Oliver, N.3
-
31
-
-
84858034312
-
Topical clustering of search results
-
U. Scaiella, P. Ferragina, A. Marino, and M. Ciaramita. Topical clustering of search results. In WSDM, pages 223-232, 2012.
-
(2012)
WSDM
, pp. 223-232
-
-
Scaiella, U.1
Ferragina, P.2
Marino, A.3
Ciaramita, M.4
-
32
-
-
77951111048
-
Extracting the discussion structure in comments on news-articles
-
A. Schuth, M. Marx, and M. de Rijke. Extracting the discussion structure in comments on news-articles. In WIDM, pages 97-104, 2007.
-
(2007)
WIDM
, pp. 97-104
-
-
Schuth, A.1
Marx, M.2
De Rijke, M.3
-
33
-
-
84860860487
-
Care to comment?: Recommendations for commenting on news stories
-
E. Shmueli, A. Kagian, Y. Koren, and R. Lempel. Care to comment?: recommendations for commenting on news stories. In WWW, pages 429-438, 2012.
-
(2012)
WWW
, pp. 429-438
-
-
Shmueli, E.1
Kagian, A.2
Koren, Y.3
Lempel, R.4
-
34
-
-
77954567494
-
How useful are your comments?: Analyzing and predicting youtube comments and comment ratings
-
S. Siersdorfer, S. Chelaru, W. Nejdl, and J. San Pedro. How useful are your comments?: analyzing and predicting youtube comments and comment ratings. In WWW, pages 891-900, 2010.
-
(2010)
WWW
, pp. 891-900
-
-
Siersdorfer, S.1
Chelaru, S.2
Nejdl, W.3
San Pedro, J.4
-
35
-
-
57349120510
-
Modeling online reviews with multi-grain topic models
-
I. Titov and R. McDonald. Modeling online reviews with multi-grain topic models. In WWW, pages 111-120, 2008.
-
(2008)
WWW
, pp. 111-120
-
-
Titov, I.1
McDonald, R.2
-
36
-
-
74549158300
-
Predicting the volume of comments on online news stories
-
M. Tsagkias, W. Weerkamp, and M. de Rijke. Predicting the volume of comments on online news stories. In CIKM, pages 1765-1768, 2009.
-
(2009)
CIKM
, pp. 1765-1768
-
-
Tsagkias, M.1
Weerkamp, W.2
De Rijke, M.3
-
37
-
-
77956195200
-
Latent aspect rating analysis on review text data: A rating regression approach
-
H. Wang, Y. Lu, and C. Zhai. Latent aspect rating analysis on review text data: a rating regression approach. In KDD, pages 783-792, 2010.
-
(2010)
KDD
, pp. 783-792
-
-
Wang, H.1
Lu, Y.2
Zhai, C.3
-
38
-
-
84860873024
-
Are web user comments useful for search
-
W. G. Yee, A. Yates, S. Liu, and O. Frieder. Are web user comments useful for search. In Workshop on Large-Scale Distributed Systems for Information Retrieval (LSDS-IR) at SIGIR'09, pages 63-70, 2009.
-
(2009)
Workshop on Large-Scale Distributed Systems for Information Retrieval (LSDS-IR) at SIGIR'09
, pp. 63-70
-
-
Yee, W.G.1
Yates, A.2
Liu, S.3
Frieder, O.4
|