메뉴 건너뛰기




Volumn 2, Issue 6, 2012, Pages

A scoping review of malaria forecasting: Past work and future directions

Author keywords

[No Author keywords available]

Indexed keywords

RAIN;

EID: 84871041138     PISSN: None     EISSN: 20446055     Source Type: Journal    
DOI: 10.1136/bmjopen-2012-001992     Document Type: Article
Times cited : (63)

References (52)
  • 1
    • 0008195734 scopus 로고
    • Epidemic malaria of the Punjab: With a note of a method of predicting epidemic years
    • Christophers SR. Epidemic malaria of the Punjab: with a note of a method of predicting epidemic years. Trans Committee Stud Malaria India 1911;2:17-26.
    • (1911) Trans Committee Stud Malaria India , vol.2 , pp. 17-26
    • Christophers, S.R.1
  • 3
    • 77952054200 scopus 로고    scopus 로고
    • Towards malaria risk prediction in Afghanistan using remote sensing
    • Adimi F, Soebiyanto RP, Safi N, et al. Towards malaria risk prediction in Afghanistan using remote sensing. Malar J 2010;9:125.
    • (2010) Malar J , vol.9 , pp. 125
    • Adimi, F.1    Soebiyanto, R.P.2    Safi, N.3
  • 4
    • 62749134546 scopus 로고    scopus 로고
    • Multi-step polynomial regression method to model and forecast malaria incidence
    • Chatterjee C, Sarkar RR. Multi-step polynomial regression method to model and forecast malaria incidence. PLoS ONE 2009;4:e4726.
    • (2009) PLoS ONE , vol.4
    • Chatterjee, C.1    Sarkar, R.R.2
  • 5
    • 35948984759 scopus 로고    scopus 로고
    • Forecasting malaria incidence based on monthly case reports and environmental factors in Karuzi, Burundi, 1997-2003
    • Gomez-Elipe A, Otero A, van Herp M, et al. Forecasting malaria incidence based on monthly case reports and environmental factors in Karuzi, Burundi, 1997-2003. Malar J 2007;6:129.
    • (2007) Malar J , vol.6 , pp. 129
    • Gomez-Elipe, A.1    Otero, A.2    Van Herp, M.3
  • 7
    • 79953203199 scopus 로고    scopus 로고
    • Modelling and prediction of malaria vector distribution in Bangladesh from remote-sensing data
    • Rahman A, Kogan F, Roytman L, et al. Modelling and prediction of malaria vector distribution in Bangladesh from remote-sensing data. Int J Remote Sens 2011;32:1233-51.
    • (2011) Int J Remote Sens , vol.32 , pp. 1233-1251
    • Rahman, A.1    Kogan, F.2    Roytman, L.3
  • 8
    • 81255158005 scopus 로고    scopus 로고
    • Theoretical investigation of malaria prevalence in two Indian cities using the response surface method
    • Roy SB, Sarkar RR, Somdatta S. Theoretical investigation of malaria prevalence in two Indian cities using the response surface method. Malar J 2011;10:301.
    • (2011) Malar J , vol.10 , pp. 301
    • Roy, S.B.1    Sarkar, R.R.2    Somdatta, S.3
  • 9
    • 12244306285 scopus 로고    scopus 로고
    • Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia II
    • Teklehaimanot HD, Schwartz J, Teklehaimanot A, et al. Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia II. Malar J 2004;3:44.
    • (2004) Malar J , vol.3 , pp. 44
    • Teklehaimanot, H.D.1    Schwartz, J.2    Teklehaimanot, A.3
  • 10
    • 77954544132 scopus 로고    scopus 로고
    • Spatiotemporal distribution of malaria and the association between its epidemic and climate factors in Hainan, China
    • Xiao D, Long Y, Wang S, et al. Spatiotemporal distribution of malaria and the association between its epidemic and climate factors in Hainan, China. Malar J 2010;9:185.
    • (2010) Malar J , vol.9 , pp. 185
    • Xiao, D.1    Long, Y.2    Wang, S.3
  • 11
    • 84871075578 scopus 로고
    • Preliminary forecasts of the incidence of malaria in the Punjab
    • Yacob M, Swaroop S. Preliminary forecasts of the incidence of malaria in the Punjab. Ind J Malariol 1947;1:491-501.
    • (1947) Ind J Malariol , vol.1 , pp. 491-501
    • Yacob, M.1    Swaroop, S.2
  • 12
    • 84871087589 scopus 로고    scopus 로고
    • Establishment of a dynamic model of malaria outbreak in Chongqing municipality
    • Yan W, Jiang S, Li J, et al. Establishment of a dynamic model of malaria outbreak in Chongqing municipality. J Trop Med (Guangzhou) 2007;7:801-3.
    • (2007) J Trop Med (Guangzhou) , vol.7 , pp. 801-803
    • Yan, W.1    Jiang, S.2    Li, J.3
  • 14
    • 44849103686 scopus 로고    scopus 로고
    • Models for short term malaria prediction in Sri Lanka
    • Briët OJ, Vounatsou P, Gunawardena DM, et al. Models for short term malaria prediction in Sri Lanka. Malar J 2008;7:76.
    • (2008) Malar J , vol.7 , pp. 76
    • Briët, O.J.1    Vounatsou, P.2    Gunawardena, D.M.3
  • 15
    • 84871078610 scopus 로고    scopus 로고
    • Epidemiological analysis on malaria incidence in China from 2004 to 2009 by time series model
    • Liu J, Qu B, He Q. Epidemiological analysis on malaria incidence in China from 2004 to 2009 by time series model. Chin J Vector Biol Control 2011;22:134-6.
    • (2011) Chin J Vector Biol Control , vol.22 , pp. 134-136
    • Liu, J.1    Qu, B.2    He, Q.3
  • 16
    • 77956454726 scopus 로고    scopus 로고
    • Development of temporal modelling for forecasting and prediction of malaria infections using time-series and ARIMAX analyses: A case study in endemic districts of Bhutan
    • Wangdi K, Singhasivanon P, Silawan T, et al. Development of temporal modelling for forecasting and prediction of malaria infections using time-series and ARIMAX analyses: a case study in endemic districts of Bhutan. Malar J 2010;9:251.
    • (2010) Malar J , vol.9 , pp. 251
    • Wangdi, K.1    Singhasivanon, P.2    Silawan, T.3
  • 17
    • 80051860298 scopus 로고    scopus 로고
    • Prediction of malaria incidence in malaria epidemic area with time series model
    • Wen L, Xu D, Lin M, et al. Prediction of malaria incidence in malaria epidemic area with time series model. J Fourth Military Med Univ 2004;25:507-10.
    • (2004) J Fourth Military Med Univ , vol.25 , pp. 507-510
    • Wen, L.1    Xu, D.2    Lin, M.3
  • 18
    • 77953361471 scopus 로고    scopus 로고
    • Meteorological variables and malaria in a Chinese temperate city: A twenty-year time-series data analysis
    • Zhang Y, Bi P, Hiller JE. Meteorological variables and malaria in a Chinese temperate city: a twenty-year time-series data analysis. Environ Int 2010;36:439-45.
    • (2010) Environ Int , vol.36 , pp. 439-445
    • Zhang, Y.1    Bi, P.2    Hiller, J.E.3
  • 19
    • 84871065649 scopus 로고    scopus 로고
    • Application of ARIMA model on prediction of malaria incidence
    • Zhou S, Huang F, Shen Y. Application of ARIMA model on prediction of malaria incidence. J Pathogen Biol 2007;2:284-6.
    • (2007) J Pathogen Biol , vol.2 , pp. 284-286
    • Zhou, S.1    Huang, F.2    Shen, Y.3
  • 20
    • 58149344020 scopus 로고    scopus 로고
    • Study on the feasibility for ARIMA model application to predict malaria incidence in an unstable malaria area
    • Zhu JM, Tang LH, Zhou SS, et al. Study on the feasibility for ARIMA model application to predict malaria incidence in an unstable malaria area. Chin J Parasitol Parasitic Dis 2007;25:232-6.
    • (2007) Chin J Parasitol Parasitic Dis , vol.25 , pp. 232-236
    • Zhu, J.M.1    Tang, L.H.2    Zhou, S.S.3
  • 21
    • 66649101032 scopus 로고    scopus 로고
    • Modelling malaria incidence with environmental dependency in a locality of Sudanese savannah area, Mali
    • Gaudart J, Toure O, Dessay N, et al. Modelling malaria incidence with environmental dependency in a locality of Sudanese savannah area, Mali. Malar J 2009;8:61.
    • (2009) Malar J , vol.8 , pp. 61
    • Gaudart, J.1    Toure, O.2    Dessay, N.3
  • 22
    • 78049480117 scopus 로고    scopus 로고
    • Forcing versus feedback: Epidemic malaria and monsoon rains in northwest India
    • doi:10.1371/journal.pcbi.1000898. 1-13
    • Laneri K, Bhadra A, Ionides EL, et al. Forcing versus feedback: epidemic malaria and monsoon rains in northwest India. PLoS Comput Biol 2010;6. doi:10.1371/journal.pcbi.1000898. 1-13
    • (2010) PLoS Comput Biol , pp. 6
    • Laneri, K.1    Bhadra, A.2    Ionides, E.L.3
  • 23
    • 78649413801 scopus 로고    scopus 로고
    • Use of an artificial neural network to predict the incidence of malaria in the city of Canta, state of Roraima
    • Cunha GB, Luitgards-Moura JF, Naves ELM, et al. Use of an artificial neural network to predict the incidence of malaria in the city of Canta, state of Roraima. Rev Soc Brasil Med Trop 2010;43:567-70.
    • (2010) Rev Soc Brasil Med Trop , vol.43 , pp. 567-570
    • Cunha, G.B.1    Luitgards-Moura, J.F.2    Naves, E.L.M.3
  • 24
    • 1542751321 scopus 로고    scopus 로고
    • Study on meteorological factors-based neural network model of malaria
    • Gao CY, Xiong HY, Yi D, et al. Study on meteorological factors-based neural network model of malaria. Chin J Epidemiol 2003;24:831-4.
    • (2003) Chin J Epidemiol , vol.24 , pp. 831-834
    • Gao, C.Y.1    Xiong, H.Y.2    Yi, D.3
  • 25
    • 54449094024 scopus 로고    scopus 로고
    • Meteorological, environmental remote sensing and neural network analysis of the epidemiology of malaria transmission in Thailand
    • Kiang R, Adimi F, Soika V, et al. Meteorological, environmental remote sensing and neural network analysis of the epidemiology of malaria transmission in Thailand. Geospat Health 2006;1:71-84.
    • (2006) Geospat Health , vol.1 , pp. 71-84
    • Kiang, R.1    Adimi, F.2    Soika, V.3
  • 26
    • 0026266103 scopus 로고
    • Interval division, forecasting and decline tendency estimation model of malaria incidence in Xuzhou City
    • Fang Y, Deng D, Gu ZC, et al. Interval division, forecasting and decline tendency estimation model of malaria incidence in Xuzhou City. Chin J Parasitol Parasitic Dis 1991;9:284-6.
    • (1991) Chin J Parasitol Parasitic Dis , vol.9 , pp. 284-286
    • Fang, Y.1    Deng, D.2    Gu, Z.C.3
  • 27
    • 84871096306 scopus 로고    scopus 로고
    • Establishment and estimation of a GM (1,1) grey model for forecasting of malaria epidemic situation in Shenzhen Longgang areas
    • Gao S, Liu J, Zhang R, et al. Establishment and estimation of a GM (1,1) grey model for forecasting of malaria epidemic situation in Shenzhen Longgang areas. J Pathogen Biol 2007;2:357-9.
    • (2007) J Pathogen Biol , vol.2 , pp. 357-359
    • Gao, S.1    Liu, J.2    Zhang, R.3
  • 28
    • 84871079935 scopus 로고    scopus 로고
    • A study on the trend of malaria incidence in China in the recent 20 years with GM (1,1)
    • Guo H, Ding H, Qu B, et al. A study on the trend of malaria incidence in China in the recent 20 years with GM (1,1). J Trop Med (Guangzhou) 2011;11:639-40.
    • (2011) J Trop Med (Guangzhou) , vol.11 , pp. 639-640
    • Guo, H.1    Ding, H.2    Qu, B.3
  • 29
    • 84871096008 scopus 로고
    • The forecasting of malaria epidemics with special reference to the malaria forecast for the year 1926
    • Gill CA. The forecasting of malaria epidemics with special reference to the malaria forecast for the year 1926. Ind J Med Res 1927;15:265-76.
    • (1927) Ind J Med Res , vol.15 , pp. 265-276
    • Gill, C.A.1
  • 30
    • 43149092148 scopus 로고    scopus 로고
    • Forecasting non-stationary diarrhea, acute respiratory infection, and malaria time-series in Niono, Mali
    • doi:10.1371/journal.pone. 0001181.1-13
    • Medina DC, Findley SE, Guindo B, et al. Forecasting non-stationary diarrhea, acute respiratory infection, and malaria time-series in Niono, Mali. PLoS One 2007;2. doi:10.1371/journal.pone. 0001181.1-13
    • (2007) PLoS One , pp. 2
    • Medina, D.C.1    Findley, S.E.2    Guindo, B.3
  • 31
    • 84871093713 scopus 로고    scopus 로고
    • The application of GM (1,1) grey model in the forecasting of malaria epidemic situation
    • Xu X, Jin X. The application of GM (1,1) grey model in the forecasting of malaria epidemic situation. Chin J Parasitic Dis Control 2005;18:178-9.
    • (2005) Chin J Parasitic Dis Control , vol.18 , pp. 178-179
    • Xu, X.1    Jin, X.2
  • 33
    • 0001692662 scopus 로고
    • The Holt-Winters forecasting procedure
    • Chatfield C. The Holt-Winters forecasting procedure. J Roy Statist Soc 1978;27:264-79.
    • (1978) J Roy Statist Soc , vol.27 , pp. 264-279
    • Chatfield, C.1
  • 36
    • 84871061489 scopus 로고    scopus 로고
    • accessed 30 May 2012
    • Darlington RB. A comparison to ARIMA. http://www.psych.cornell.edu/ darlington/series/series2.htm (accessed 30 May 2012).
    • A Comparison to ARIMA
    • Darlington, R.B.1
  • 39
    • 11244261713 scopus 로고    scopus 로고
    • Econometric computing with HC and HAC covariance matrix estimators
    • Zeileis A. Econometric computing with HC and HAC covariance matrix estimators. J Statist Software 2004;11:1-17. (Pubitemid 40068147)
    • (2004) Journal of Statistical Software , vol.11 , pp. 1-17
    • Zeileis, A.1
  • 40
    • 0001829246 scopus 로고
    • Introduction to Grey system theory
    • Deng JL. Introduction to Grey system theory. J Grey System 1989;1:1-24.
    • (1989) J Grey System , vol.1 , pp. 1-24
    • Deng, J.L.1
  • 41
    • 13244279551 scopus 로고    scopus 로고
    • A gray system modelling approach to the prediction of calibration intervals
    • Lin KH, Liu BD. A gray system modelling approach to the prediction of calibration intervals. IEEE Trans Instr Measure 2005;54:297-305.
    • (2005) IEEE Trans Instr Measure , vol.54 , pp. 297-305
    • Lin, K.H.1    Liu, B.D.2
  • 43
    • 0025753873 scopus 로고
    • On the use of mathematical models of malaria transmission
    • Koella JC. On the use of mathematical models of malaria transmission. Acta Trop 1991;49:1-25.
    • (1991) Acta Trop , vol.49 , pp. 1-25
    • Koella, J.C.1
  • 44
    • 35248833159 scopus 로고
    • Neural networks: Forecasting breakthrough or passing fad?
    • Chatfield C. Neural networks: forecasting breakthrough or passing fad? Int J Forecasting 1993;9:1-3.
    • (1993) Int J Forecasting , vol.9 , pp. 1-3
    • Chatfield, C.1
  • 45
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
    • DOI 10.1016/S0895-4356(96)00002-9, PII S0895435696000029
    • Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 1996;49:1225-31. (Pubitemid 26386228)
    • (1996) Journal of Clinical Epidemiology , vol.49 , Issue.11 , pp. 1225-1231
    • Tu, J.V.1
  • 47
    • 38949170600 scopus 로고    scopus 로고
    • Simple robust averages of forecasts: Some empirical results
    • Jose VRR, Winkler RL. Simple robust averages of forecasts: Some empirical results. Int J Forecasting 2008;24:163-9.
    • (2008) Int J Forecasting , vol.24 , pp. 163-169
    • Jose, V.R.R.1    Winkler, R.L.2
  • 49
    • 78751611452 scopus 로고    scopus 로고
    • To explain or to predict?
    • Shmueli G. To explain or to predict? Statist Sci 2010;25:289-310.
    • (2010) Statist Sci , vol.25 , pp. 289-310
    • Shmueli, G.1
  • 51
    • 33749517168 scopus 로고    scopus 로고
    • Another look at measures of forecast accuracy
    • DOI 10.1016/j.ijforecast.2006.03.001, PII S0169207006000239
    • Hyndman RJ, Koehler AB. Another look at measures of forecast accuracy. Int J Forecasting 2006;22:679-88. (Pubitemid 44524717)
    • (2006) International Journal of Forecasting , vol.22 , Issue.4 , pp. 679-688
    • Hyndman, R.J.1    Koehler, A.B.2
  • 52
    • 0002006114 scopus 로고
    • Error measures for generalizing about forecasting methods - Empirical comparisons
    • Armstrong JS, Collopy F. Error measures for generalizing about forecasting methods - empirical comparisons. Int J Forecasting 1992;8:69-80.
    • (1992) Int J Forecasting , vol.8 , pp. 69-80
    • Armstrong, J.S.1    Collopy, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.