메뉴 건너뛰기




Volumn 138, Issue 4, 2010, Pages 1293-1306

Comparison of ensemble Kalman filters under non-Gaussianity

Author keywords

Ensembles; Kalman filters

Indexed keywords

EMPIRICAL STUDIES; ENSEMBLE KALMAN FILTER; ENSEMBLES; FILTERING METHOD; FREE PARAMETERS; GAUSSIAN ASSUMPTION; NON-GAUSSIAN; NONGAUSSIANITY; RELATIVE PERFORMANCE; SQUARE ROOT KALMAN FILTER; STOCHASTIC FILTERS;

EID: 77955540665     PISSN: 00270644     EISSN: None     Source Type: Journal    
DOI: 10.1175/2009MWR3133.1     Document Type: Article
Times cited : (61)

References (21)
  • 1
    • 0035655814 scopus 로고    scopus 로고
    • An ensemble adjustment Kalman filter for data assimilation
    • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884-2903.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 2884-2903
    • Anderson, J.L.1
  • 2
    • 0042821672 scopus 로고    scopus 로고
    • A local least squares framework for ensemble filtering
    • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634-642.
    • (2003) Mon. Wea. Rev. , vol.131 , pp. 634-642
    • Anderson, J.L.1
  • 3
    • 34248655165 scopus 로고    scopus 로고
    • Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter
    • Anderson, J. L., 2007: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter. Physica D, 230, 99-111.
    • (2007) Physica D , vol.230 , pp. 99-111
    • Anderson, J.L.1
  • 4
    • 0033500692 scopus 로고    scopus 로고
    • A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts
    • Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 2741-2758.
    • (1999) Mon. Wea. Rev. , vol.127 , pp. 2741-2758
    • Anderson, J.L.1    Anderson, S.L.2
  • 5
    • 1642360010 scopus 로고    scopus 로고
    • Toward a nonlinear ensemble filter for high-dimensional systems
    • doi:10.1029/2002JD002900
    • Bengtsson, T., C. Snyder, and D. Nychka, 2003: Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res., 108, 8775, doi:10.1029/2002JD002900.
    • (2003) J. Geophys. Res. , vol.108 , pp. 8775
    • Bengtsson, T.1    Snyder, C.2    Nychka, D.3
  • 6
    • 0035270690 scopus 로고    scopus 로고
    • Adaptive sampling with the ensemble transformation Kalman filter. Part I: Theoretical aspects
    • Bishop, C. H., B. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transformation Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420-436.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 420-436
    • Bishop, C.H.1    Etherton, B.2    Majumdar, S.J.3
  • 7
    • 0028193070 scopus 로고
    • Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
    • Evensen, G., 1994: Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10 143-10 162.
    • (1994) J. Geophys. Res. , vol.99 , Issue.C5
    • Evensen, G.1
  • 8
    • 84884550570 scopus 로고    scopus 로고
    • The ensemble Kalman filter: Theoretical formulation and practical implementation
    • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343-367.
    • (2003) Ocean Dyn , vol.53 , pp. 343-367
    • Evensen, G.1
  • 10
    • 33750502680 scopus 로고    scopus 로고
    • Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants
    • Furrer, R., and T. Bengtsson, 2007: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J. Multivar. Anal., 98, 227-255.
    • (2007) J. Multivar. Anal. , vol.98 , pp. 227-255
    • Furrer, R.1    Bengtsson, T.2
  • 12
    • 0032024819 scopus 로고    scopus 로고
    • Data assimilation using an ensemble Kalman filter technique
    • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796-811.
    • (1998) Mon. Wea. Rev. , vol.126 , pp. 796-811
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 13
    • 4444303259 scopus 로고    scopus 로고
    • Implications of stochastic and deterministic filters as ensemble-based data assimilation methods in varying regimes of error growth
    • Lawson, G. W., and J. A. Hansen, 2004: Implications of stochastic and deterministic filters as ensemble-based data assimilation methods in varying regimes of error growth. Mon. Wea. Rev., 132, 1966-1981.
    • (2004) Mon. Wea. Rev. , vol.132 , pp. 1966-1981
    • Lawson, G.W.1    Hansen, J.A.2
  • 14
    • 43049140484 scopus 로고    scopus 로고
    • Unbiased ensemble square root filters
    • Livings, D. M., S. L. Dance, and N. K. Nicols, 2008: Unbiased ensemble square root filters. Physica D, 237, 1021-1028.
    • (2008) Physica D , vol.237 , pp. 1021-1028
    • Livings, D.M.1    Dance, S.L.2    Nicols, N.K.3
  • 15
    • 0000241853 scopus 로고
    • Deterministic nonperiodic flow
    • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130-141.
    • (1963) J. Atmos. Sci. , vol.20 , pp. 130-141
    • Lorenz, E.N.1
  • 16
    • 8844258829 scopus 로고    scopus 로고
    • A local ensemble Kalman filter for atmospheric data assimilation
    • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415-428.
    • (2004) Tellus , vol.56 A , pp. 415-428
    • Ott, E.1
  • 17
    • 53249135012 scopus 로고    scopus 로고
    • Sampling errors in ensemble Kalman filtering. Part I: Theory
    • Sacher, W., and P. Bartello, 2008: Sampling errors in ensemble Kalman filtering. Part I: Theory. Mon. Wea. Rev., 136, 3035-3049.
    • (2008) Mon. Wea. Rev. , vol.136 , pp. 3035-3049
    • Sacher, W.1    Bartello, P.2
  • 18
    • 68249140015 scopus 로고    scopus 로고
    • Sampling errors in ensemble Kalman filtering. Part II: Application to a barotropic model
    • Sacher, W., and P. Bartello, 2009: Sampling errors in ensemble Kalman filtering. Part II: Application to a barotropic model. Mon. Wea. Rev., 137, 1640-1654.
    • (2009) Mon. Wea. Rev. , vol.137 , pp. 1640-1654
    • Sacher, W.1    Bartello, P.2
  • 19
    • 39049173291 scopus 로고    scopus 로고
    • Implications of the form of the ensemble transformation in the ensemble square root filters
    • Sakov, P., and P. R. Oke, 2008: Implications of the form of the ensemble transformation in the ensemble square root filters. Mon. Wea. Rev., 136, 1042-1053.
    • (2008) Mon. Wea. Rev. , vol.136 , pp. 1042-1053
    • Sakov, P.1    Oke, P.R.2
  • 21
    • 0036646009 scopus 로고    scopus 로고
    • Ensemble data assimilation without perturbed observations
    • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 1913-1924.
    • (2002) Mon. Wea. Rev. , vol.130 , pp. 1913-1924
    • Whitaker, J.S.1    Hamill, T.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.