-
1
-
-
26844535199
-
Rigorous results on valence-bond ground states in antiferromagnets
-
Affleck, I, Kennedy, T, Lieb, EH and Tasaki, H. 1987. Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett., 59: 799-802.
-
(1987)
Phys. Rev. Lett.
, vol.59
, pp. 799-802
-
-
Affleck, I.1
Kennedy, T.2
Lieb, E.H.3
Tasaki, H.4
-
2
-
-
77953132134
-
Matrix exponentials and parallel prefix computation in a quantum control problem
-
Auckenthaler, T, Bader, M, Huckle, T, Spörl, A and Waldherr, K. 2010. Matrix exponentials and parallel prefix computation in a quantum control problem. Parallel Comput., 36: 359-369.
-
(2010)
Parallel Comput.
, vol.36
, pp. 359-369
-
-
Auckenthaler, T.1
Bader, M.2
Huckle, T.3
Spörl, A.4
Waldherr, K.5
-
3
-
-
0016987067
-
Properties of the eigenvectors of persymmetric matrices with applications to communication theory
-
Cantoni, A and Butler, P. 1976. Properties of the eigenvectors of persymmetric matrices with applications to communication theory. IEEE Trans. Commun., 24: 804-809.
-
(1976)
IEEE Trans. Commun.
, vol.24
, pp. 804-809
-
-
Cantoni, A.1
Butler, P.2
-
4
-
-
0033632284
-
Any circulant-like preconditioner for multilevel matrices is not superlinear
-
Capizzano, SS and Tyrtyshnikov, E. 2000. Any circulant-like preconditioner for multilevel matrices is not superlinear. SIAM J. Matrix Anal. Appl., 21: 431-439.
-
(2000)
SIAM J. Matrix Anal. Appl.
, vol.21
, pp. 431-439
-
-
Capizzano, S.S.1
Tyrtyshnikov, E.2
-
5
-
-
34250499792
-
Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition
-
Carroll, J and Chang, JJ. 1970. Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition. Psychometrika, 35: 283-319.
-
(1970)
Psychometrika
, vol.35
, pp. 283-319
-
-
Carroll, J.1
Chang, J.J.2
-
6
-
-
18144413276
-
-
2, New York, New York,: AMS Chelsea Publishing Company
-
Davis, PJ. 1994. Circulant Matrices, 2, New York: AMS Chelsea Publishing Company.
-
(1994)
Circulant Matrices
-
-
Davis, P.J.1
-
9
-
-
0004236492
-
-
Baltimore, Baltimore,: The Johns Hopkins University Press
-
Golub, G and Van Loan, Ch. 1989. Matrix Computations, Baltimore: The Johns Hopkins University Press.
-
(1989)
Matrix Computations
-
-
Golub, G.1
van Loan, C.2
-
12
-
-
79960994573
-
O(d log N)-quantics approximation of N - d tensors in high-dimensional numerical modeling
-
Khoromskij, B. 2011. O(d log N)-quantics approximation of N - d tensors in high-dimensional numerical modeling. Constr. Approx., 34: 1-24.
-
(2011)
Constr. Approx.
, vol.34
, pp. 1-24
-
-
Khoromskij, B.1
-
13
-
-
0008417829
-
Two soluble models of an antiferromagnetic chain
-
Lieb, E, Schultz, T and Mattis, D. 1961. Two soluble models of an antiferromagnetic chain. Ann. Phys., 16: 407-466.
-
(1961)
Ann. Phys.
, vol.16
, pp. 407-466
-
-
Lieb, E.1
Schultz, T.2
Mattis, D.3
-
14
-
-
80053896203
-
Tensor-train decomposition
-
Oseledets, IV. 2011. Tensor-train decomposition. SIAM J. Sci. Comput., 33: 2295-2317.
-
(2011)
SIAM J. Sci. Comput.
, vol.33
, pp. 2295-2317
-
-
Oseledets, I.V.1
-
15
-
-
34447647603
-
Matrix-product state representations
-
Pérez-García, D, Verstraete, F, Wolf, M and Cirac, J. 2007. Matrix-product state representations. Quant. Inf. Comput., 7: 401-403.
-
(2007)
Quant. Inf. Comput.
, vol.7
, pp. 401-403
-
-
Pérez-García, D.1
Verstraete, F.2
Wolf, M.3
Cirac, J.4
-
16
-
-
42449155932
-
String order and symmetries in quantum spin lattices
-
Perez-Garcia, D, Wolf, MM, Sanz, M, Verstraete, F and Cirac, JI. 2008. String order and symmetries in quantum spin lattices. Phys. Rev. Lett., 100: 167202
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 167202
-
-
Perez-Garcia, D.1
Wolf, M.M.2
Sanz, M.3
Verstraete, F.4
Cirac, J.I.5
-
17
-
-
33744583732
-
The one-dimensional ising model with a transverse field
-
Pfeuty, P. 1970. The one-dimensional ising model with a transverse field. Ann. Phys., 57: 79-90.
-
(1970)
Ann. Phys.
, vol.57
, pp. 79-90
-
-
Pfeuty, P.1
-
18
-
-
79961065197
-
Exploiting translational invariance in matrix product state simulations of spin chains with periodic boundary conditions
-
Pirvu, B, Verstraete, F and Vidal, G. 2011. Exploiting translational invariance in matrix product state simulations of spin chains with periodic boundary conditions. Phys. Rev. B, 83: 125104
-
(2011)
Phys. Rev. B
, vol.83
, pp. 125104
-
-
Pirvu, B.1
Verstraete, F.2
Vidal, G.3
-
19
-
-
36649005167
-
Variational quantum monte carlo simulations with tensor-network states
-
Sandvik, A and Vidal, G. 2007. Variational quantum monte carlo simulations with tensor-network states. Phys. Rev. Lett., 99: 220602
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 220602
-
-
Sandvik, A.1
Vidal, G.2
-
20
-
-
64649102065
-
Matrix product states: symmetries and two-body hamiltonians
-
Sanz, M, Wolf, MM, Perez-Garcia, D and Cirac, JI. 2009. Matrix product states: symmetries and two-body hamiltonians. Phys. Rev. A, 79
-
(2009)
Phys. Rev. A
, vol.79
-
-
Sanz, M.1
Wolf, M.M.2
Perez-Garcia, D.3
Cirac, J.I.4
-
21
-
-
78650755970
-
The density-matrix renormalization group in the age of matrix product states
-
Schollwöck, U. 2011. The density-matrix renormalization group in the age of matrix product states. Ann. Phys., 326: 96-192.
-
(2011)
Ann. Phys.
, vol.326
, pp. 96-192
-
-
Schollwöck, U.1
-
22
-
-
0013953617
-
Some mathematical notes on three-mode factor analysis
-
Tucker, LR. 1966. Some mathematical notes on three-mode factor analysis. Psychometrika, 31: 279-311.
-
(1966)
Psychometrika
, vol.31
, pp. 279-311
-
-
Tucker, L.R.1
-
23
-
-
33645062947
-
Matrix product states represent ground states faithfully
-
Verstraete, F and Cirac, JI. 2006. Matrix product states represent ground states faithfully. Phys. Rev. B, 73: 094423
-
(2006)
Phys. Rev. B
, vol.73
, pp. 094423
-
-
Verstraete, F.1
Cirac, J.I.2
-
24
-
-
0242425255
-
Efficient classical simulation of slightly entangled quantum computations
-
Vidal, G. 2003. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett., 91: 147902
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 147902
-
-
Vidal, G.1
|