메뉴 건너뛰기




Volumn 40, Issue 1, 2013, Pages 152-168

Functional time series approach for forecasting very short-term electricity demand

Author keywords

functional principal component analysis; multivariate time series; ordinary least squares regression; penalised least squares regression; roughness penalty; seasonal time series

Indexed keywords


EID: 84870863987     PISSN: 02664763     EISSN: 13600532     Source Type: Journal    
DOI: 10.1080/02664763.2012.740619     Document Type: Article
Times cited : (37)

References (46)
  • 1
    • 40849085713 scopus 로고    scopus 로고
    • Nonparametric time series prediction: A semi-functional partial linear modeling
    • doi:10.1016/j.jmva.2007.04.010
    • Aneiros-Pérez, G. and Vieu, P. 2008. Nonparametric time series prediction: A semi-functional partial linear modeling. J. Multivariate Anal., 99: 834-857. (doi:10.1016/j.jmva.2007.04.010)
    • (2008) J. Multivariate Anal. , vol.99 , pp. 834-857
    • Aneiros-Pérez, G.1    Vieu, P.2
  • 2
    • 77956266227 scopus 로고    scopus 로고
    • Functional linear regression with functional response: Application to prediction of electricity consumption
    • In: Dabo-Niang S., Ferraty F., editors Heidelberg, Heidelberg,: Springer
    • Antoch, J., Prchal, L., De Rosa, M. R. and Sarda, P. 2008. "Functional linear regression with functional response: Application to prediction of electricity consumption". In Functional and Operatorial Statistics, Edited by: Dabo-Niang, S. and Ferraty, F. 23-29. Heidelberg: Springer.
    • (2008) Functional and Operatorial Statistics , pp. 23-29
    • Antoch, J.1    Prchal, L.2    de Rosa, M.R.3    Sarda, P.4
  • 3
    • 0034338204 scopus 로고    scopus 로고
    • Autoregressive forecasting of some functional climatic variations
    • doi:10.1111/1467-9469.00215
    • Besse, P. C., Cardot, H. and Stephenson, D. B. 2000. Autoregressive forecasting of some functional climatic variations. Scand. J. Stat., 27: 673-687. (doi:10.1111/1467-9469.00215)
    • (2000) Scand. J. Stat. , vol.27 , pp. 673-687
    • Besse, P.C.1    Cardot, H.2    Stephenson, D.B.3
  • 5
    • 33847349358 scopus 로고    scopus 로고
    • Prediction in functional linear regression
    • doi:10.1214/009053606000000830
    • Cai, T. and Hall, P. 2006. Prediction in functional linear regression. Ann. Stat., 34: 2159-2179. (doi:10.1214/009053606000000830)
    • (2006) Ann. Stat. , vol.34 , pp. 2159-2179
    • Cai, T.1    Hall, P.2
  • 6
    • 0034138664 scopus 로고    scopus 로고
    • Very short-term load forecasting using artificial neural networks
    • doi:10.1109/59.852131
    • Charytoniuk, W. and Chen, M. S. 2000. Very short-term load forecasting using artificial neural networks. IEEE Trans. Power Syst., 15: 263-268. (doi:10.1109/59.852131)
    • (2000) IEEE Trans. Power Syst. , vol.15 , pp. 263-268
    • Charytoniuk, W.1    Chen, M.S.2
  • 7
    • 21144464610 scopus 로고
    • Calculating interval forecasts
    • Chatfield, C. 1993. Calculating interval forecasts. J. Bus. Econom. Stat., 11: 121-135.
    • (1993) J. Bus. Econom. Stat. , vol.11 , pp. 121-135
    • Chatfield, C.1
  • 8
    • 85057678903 scopus 로고    scopus 로고
    • Boca Raton, FL, Boca Raton, FL,: Chapman & Hall/CRC
    • Chatfield, C. 2000. Time-Series Forecasting, Boca Raton, FL: Chapman & Hall/CRC.
    • (2000) Time-Series Forecasting
    • Chatfield, C.1
  • 9
    • 0036829580 scopus 로고    scopus 로고
    • The inclusion of exogenous variables in functional autoregressive ozone forecasting
    • doi:10.1002/env.527
    • Damon, J. and Guillas, S. 2002. The inclusion of exogenous variables in functional autoregressive ozone forecasting. Environmetrics, 13: 759-774. (doi:10.1002/env.527)
    • (2002) Environmetrics , vol.13 , pp. 759-774
    • Damon, J.1    Guillas, S.2
  • 10
    • 0000957849 scopus 로고
    • Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference
    • doi:10.1016/0047-259X(82)90088-4
    • Dauxois, J., Pousse, A. and Romain, Y. 1982. Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference. J. Multivariate Anal., 12: 136-154. (doi:10.1016/0047-259X(82)90088-4)
    • (1982) J. Multivariate Anal. , vol.12 , pp. 136-154
    • Dauxois, J.1    Pousse, A.2    Romain, Y.3
  • 11
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar, J. 2006. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res., 7: 1-30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demsar, J.1
  • 12
    • 84856253869 scopus 로고    scopus 로고
    • Short-term load forecasting based on a semi-parametric additive model
    • doi:10.1109/TPWRS.2011.2162082
    • Fan, S. and Hyndman, R. J. 2012. Short-term load forecasting based on a semi-parametric additive model. IEEE Trans. Power Syst., 27: 134-141. (doi:10.1109/TPWRS.2011.2162082)
    • (2012) IEEE Trans. Power Syst. , vol.27 , pp. 134-141
    • Fan, S.1    Hyndman, R.J.2
  • 14
    • 77956261937 scopus 로고    scopus 로고
    • Functional clustering and linear regression for peak load forecasting
    • doi:10.1016/j.ijforecast.2009.05.015
    • Goia, A., May, C. and Fused, G. 2010. Functional clustering and linear regression for peak load forecasting. Int. J. Forecast., 26: 700-711. (doi:10.1016/j.ijforecast.2009.05.015)
    • (2010) Int. J. Forecast. , vol.26 , pp. 700-711
    • Goia, A.1    May, C.2    Fused, G.3
  • 15
    • 35348874516 scopus 로고    scopus 로고
    • Methodology and convergence rates for functional linear regression
    • doi:10.1214/009053606000000957
    • Hall, P. and Horowitz, J. L. 2007. Methodology and convergence rates for functional linear regression. Ann. Stat., 35: 70-91. (doi:10.1214/009053606000000957)
    • (2007) Ann. Stat. , vol.35 , pp. 70-91
    • Hall, P.1    Horowitz, J.L.2
  • 16
    • 57549119141 scopus 로고    scopus 로고
    • Theory for high-order bounds in functional principal components analysis
    • doi:10.1017/S0305004108001850
    • Hall, P. and Hosseini-Nasab, M. 2009. Theory for high-order bounds in functional principal components analysis. Math. Proc. Cambridge Philos. Soc., 146: 225-256. (doi:10.1017/S0305004108001850)
    • (2009) Math. Proc. Cambridge Philos. Soc. , vol.146 , pp. 225-256
    • Hall, P.1    Hosseini-Nasab, M.2
  • 17
    • 33747153005 scopus 로고    scopus 로고
    • Properties of principal component methods for functional and longitudinal data analysis
    • doi:10.1214/009053606000000272
    • Hall, P., Müller, H. G. and Wang, J. L. 2006. Properties of principal component methods for functional and longitudinal data analysis. Ann. Stat., 34: 1493-1517. (doi:10.1214/009053606000000272)
    • (2006) Ann. Stat. , vol.34 , pp. 1493-1517
    • Hall, P.1    Müller, H.G.2    Wang, J.L.3
  • 18
    • 0035252777 scopus 로고    scopus 로고
    • A functional data-analytic approach to signal discrimination
    • doi:10.1198/00401700152404273
    • Hall, P., Poskitt, D. S. and Presnell, B. 2001. A functional data-analytic approach to signal discrimination. Technometrics, 43: 1-9. (doi:10.1198/00401700152404273)
    • (2001) Technometrics , vol.43 , pp. 1-9
    • Hall, P.1    Poskitt, D.S.2    Presnell, B.3
  • 19
    • 0035248045 scopus 로고    scopus 로고
    • Neural networks for short-term load forecasting: A review and evaluation
    • doi:10.1109/59.910780
    • Hippert, H. S., Pedreira, C. E. and Souza, R. C. 2001. Neural networks for short-term load forecasting: A review and evaluation. IEEE Trans. Power Syst., 16: 44-55. (doi:10.1109/59.910780)
    • (2001) IEEE Trans. Power Syst. , vol.16 , pp. 44-55
    • Hippert, H.S.1    Pedreira, C.E.2    Souza, R.C.3
  • 20
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • doi:10.1080/00401706.1970.10488634
    • Hoerl, A. E. and Kennard, R. W. 1970. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12: 55-67. (doi:10.1080/00401706.1970.10488634)
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 21
    • 77951665233 scopus 로고    scopus 로고
    • Density forecasting for long-term peak electricity demand
    • doi:10.1109/TPWRS.2009.2036017
    • Hyndman, R. J. and Fan, S. 2010. Density forecasting for long-term peak electricity demand. IEEE Trans. Power Syst., 25: 1142-1153. (doi:10.1109/TPWRS.2009.2036017)
    • (2010) IEEE Trans. Power Syst. , vol.25 , pp. 1142-1153
    • Hyndman, R.J.1    Fan, S.2
  • 22
    • 48749112805 scopus 로고    scopus 로고
    • Automatic time series forecasting: The forecast package for R
    • Hyndman, R. J. and Khandakar, Y. 2008. Automatic time series forecasting: The forecast package for R. J. Statist. Softw., 27
    • (2008) J. Statist. Softw. , vol.27
    • Hyndman, R.J.1    Khandakar, Y.2
  • 24
    • 77749302275 scopus 로고    scopus 로고
    • Rainbow plots, bagplots, and boxplots for functional data
    • doi:10.1198/jcgs.2009.08158
    • Hyndman, R. J. and Shang, H. L. 2010. Rainbow plots, bagplots, and boxplots for functional data. J. Comput. Graph. Stat., 19: 29-45. (doi:10.1198/jcgs.2009.08158)
    • (2010) J. Comput. Graph. Stat. , vol.19 , pp. 29-45
    • Hyndman, R.J.1    Shang, H.L.2
  • 26
    • 0036832120 scopus 로고    scopus 로고
    • Estimating the covariance function with functional data
    • doi:10.1348/000711002760554570
    • Lee, S. Y., Zhang, W. and Song, X. Y. 2002. Estimating the covariance function with functional data. British J. Math. Statist. Psychol., 55: 247-261. (doi:10.1348/000711002760554570)
    • (2002) British J. Math. Statist. Psychol. , vol.55 , pp. 247-261
    • Lee, S.Y.1    Zhang, W.2    Song, X.Y.3
  • 28
    • 33749502424 scopus 로고    scopus 로고
    • The ARHD model
    • doi:10.1016/j.jspi.2005.12.006
    • Mas, A. and Pumo, B. 2007. The ARHD model. J. Statist. Plann. Inference, 137: 538-553. (doi:10.1016/j.jspi.2005.12.006)
    • (2007) J. Statist. Plann. Inference , vol.137 , pp. 538-553
    • Mas, A.1    Pumo, B.2
  • 29
    • 55849103545 scopus 로고    scopus 로고
    • Functional linear regression with derivatives
    • doi:10.1080/10485250802401046
    • Mas, A. and Pumo, B. 2009. Functional linear regression with derivatives. J. Nonparametr. Stat., 21: 19-40. (doi:10.1080/10485250802401046)
    • (2009) J. Nonparametr. Stat. , vol.21 , pp. 19-40
    • Mas, A.1    Pumo, B.2
  • 30
    • 0000238336 scopus 로고
    • A simplex method for function minimization
    • Nelder, J. A. and Mead, R. 1965. A simplex method for function minimization. Comput. J., 7: 308-313.
    • (1965) Comput. J. , vol.7 , pp. 308-313
    • Nelder, J.A.1    Mead, R.2
  • 31
    • 32444450670 scopus 로고    scopus 로고
    • R Core Team, Vienna, Available at, ISBN 3-900051-07-0
    • R Core Team, R Foundation for Statistical Computing, Vienna, 2012. Available at http://www.R-project.org, ISBN 3-900051-07-0.
    • (2012) R Foundation for Statistical Computing
  • 34
    • 35348906983 scopus 로고    scopus 로고
    • Functional principal component regression and functional partial least squares
    • doi:10.1198/016214507000000527
    • Reiss, P. T. and Ogden, T. R. 2007. Functional principal component regression and functional partial least squares. J. Am. Statist. Assoc., 102: 984-996. (doi:10.1198/016214507000000527)
    • (2007) J. Am. Statist. Assoc. , vol.102 , pp. 984-996
    • Reiss, P.T.1    Ogden, T.R.2
  • 35
    • 0033481728 scopus 로고    scopus 로고
    • The bagplot: A bivariate boxplot
    • Rousseeuw, P., Ruts, I. and Tukey, J. 1999. The bagplot: A bivariate boxplot. Am. Statist., 53: 382-387.
    • (1999) Am. Statist. , vol.53 , pp. 382-387
    • Rousseeuw, P.1    Ruts, I.2    Tukey, J.3
  • 36
    • 79951809453 scopus 로고    scopus 로고
    • Nonparametric time series forecasting with dynamic updating
    • doi:10.1016/j.matcom.2010.04.027
    • Shang, H. L. and Hyndman, R. J. 2011. Nonparametric time series forecasting with dynamic updating. Math. Comput. Simulation, 81: 1310-1324. (doi:10.1016/j.matcom.2010.04.027)
    • (2011) Math. Comput. Simulation , vol.81 , pp. 1310-1324
    • Shang, H.L.1    Hyndman, R.J.2
  • 37
    • 69249132941 scopus 로고    scopus 로고
    • On modeling and forecasting time series of smooth curves
    • doi:10.1198/tech.2009.08100
    • Shen, H. 2009. On modeling and forecasting time series of smooth curves. Technometrics, 51: 227-238. (doi:10.1198/tech.2009.08100)
    • (2009) Technometrics , vol.51 , pp. 227-238
    • Shen, H.1
  • 38
    • 60849087198 scopus 로고    scopus 로고
    • Interday forecasting and intraday updating of call center arrivals
    • doi:10.1287/msom.1070.0179
    • Shen, H. and Huang, J. Z. 2008. Interday forecasting and intraday updating of call center arrivals. Manuf. Serv. Oper. Manag., 10: 391-410. (doi:10.1287/msom.1070.0179)
    • (2008) Manuf. Serv. Oper. Manag. , vol.10 , pp. 391-410
    • Shen, H.1    Huang, J.Z.2
  • 39
    • 33749526470 scopus 로고    scopus 로고
    • Density forecasting for the efficient balancing of the generation and consumption of electricity
    • doi:10.1016/j.ijforecast.2006.02.001
    • Taylor, J. W. 2006. Density forecasting for the efficient balancing of the generation and consumption of electricity. Int. J. Forecast., 22: 707-724. (doi:10.1016/j.ijforecast.2006.02.001)
    • (2006) Int. J. Forecast. , vol.22 , pp. 707-724
    • Taylor, J.W.1
  • 40
    • 55349093262 scopus 로고    scopus 로고
    • An evaluation of methods for very short-term load forecasting using minute-by-minute British data
    • doi:10.1016/j.ijforecast.2008.07.007
    • Taylor, J. W. 2008. An evaluation of methods for very short-term load forecasting using minute-by-minute British data. Int. J. Forecast., 24: 645-658. (doi:10.1016/j.ijforecast.2008.07.007)
    • (2008) Int. J. Forecast. , vol.24 , pp. 645-658
    • Taylor, J.W.1
  • 41
    • 31744444183 scopus 로고    scopus 로고
    • A comparison of univariate methods for forecasting electricity demand up to a day ahead
    • doi:10.1016/j.ijforecast.2005.06.006
    • Taylor, J. W., de Menezes, L. M. and McSharry, P. E. 2006. A comparison of univariate methods for forecasting electricity demand up to a day ahead. Int. J. Forecast., 22: 1-16. (doi:10.1016/j.ijforecast.2005.06.006)
    • (2006) Int. J. Forecast. , vol.22 , pp. 1-16
    • Taylor, J.W.1    de Menezes, L.M.2    McSharry, P.E.3
  • 42
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. J. R. Statist. Soc. Ser. B, 58: 267-288.
    • (1996) J. R. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 43
    • 0035273372 scopus 로고    scopus 로고
    • Real-time very short-term load prediction for power-system automatic generation control
    • doi:10.1109/87.911377
    • Trudnowski, D. J., McReynolds, M. L. and Johnson, J. M. 2001. Real-time very short-term load prediction for power-system automatic generation control. IEEE Trans. Control Syst. Technol., 9: 254-260. (doi:10.1109/87.911377)
    • (2001) IEEE Trans. Control Syst. Technol. , vol.9 , pp. 254-260
    • Trudnowski, D.J.1    McReynolds, M.L.2    Johnson, J.M.3
  • 44
    • 0000640338 scopus 로고
    • Mathematics and the picturing of data
    • Canadian Mathematical Congress, Montreal
    • J. Tukey, Mathematics and the picturing of data, Proceedings of the International Congress of Mathematicians, Vol. 2, Canadian Mathematical Congress, Montreal, 1974, pp. 523-532.
    • (1974) Proceedings of the International Congress of Mathematicians , vol.2 , pp. 523-532
    • Tukey, J.1
  • 46
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • doi:10.1111/j.1467-9868.2005.00503.x
    • Zou, H. and Hastie, T. 2005. Regularization and variable selection via the elastic net. J. R. Statist. Soc. Ser. B, 67: 301-320. (doi:10.1111/j.1467-9868.2005.00503.x)
    • (2005) J. R. Statist. Soc. Ser. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.