메뉴 건너뛰기




Volumn 38, Issue , 2013, Pages 39-51

Effects of synaptic connectivity on liquid state machine performance

Author keywords

Genetic algorithm; Liquid state machine; Neural microcircuit optimization; Spatiotemporal pattern classification

Indexed keywords

BENCH-MARK PROBLEMS; CENTRAL NERVOUS SYSTEMS; CLASSIFICATION ACCURACY; COMPUTATIONAL NEURAL NETWORKS; DYNAMIC SYNAPSIS; HIGH-DIMENSIONAL FEATURE SPACE; KERNEL FUNCTION; LINEAR SEPARATION; LIQUID STATE MACHINES; MINIMUM STRUCTURES; NEURAL MICROCIRCUIT; NEURAL NETWORK MODEL; PARAMETER SETTING; REAL TIME COMPUTING; SPATIOTEMPORAL PATTERNS; SPIKING NEURON; SYNAPTIC CONNECTIVITY; SYNAPTIC STRENGTHS; SYNAPTIC WEIGHT; TIME VARYING; TWO PARAMETER;

EID: 84870714013     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2012.11.003     Document Type: Article
Times cited : (47)

References (42)
  • 1
    • 30744439313 scopus 로고    scopus 로고
    • A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
    • Achard S., Salvador R., Whitcher B., Suckling J., Bullmore E. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. The Journal of Neuroscience 2006, 26:63-72.
    • (2006) The Journal of Neuroscience , vol.26 , pp. 63-72
    • Achard, S.1    Salvador, R.2    Whitcher, B.3    Suckling, J.4    Bullmore, E.5
  • 3
    • 0038458818 scopus 로고    scopus 로고
    • Is there a support vector machine hiding in the dentate gyrus?
    • Baker J.L. Is there a support vector machine hiding in the dentate gyrus?. Neurocomputing 2003, 52-54:199-207.
    • (2003) Neurocomputing , pp. 199-207
    • Baker, J.L.1
  • 4
    • 41149088380 scopus 로고    scopus 로고
    • Pattern separation in the human hippocampal CA3 and dentate gyrus
    • Bakker A., Kirwan C.B., Miller M., Stark C.E. Pattern separation in the human hippocampal CA3 and dentate gyrus. Science 2008, 319:1640-1642.
    • (2008) Science , vol.319 , pp. 1640-1642
    • Bakker, A.1    Kirwan, C.B.2    Miller, M.3    Stark, C.E.4
  • 6
    • 4444234075 scopus 로고    scopus 로고
    • Optimal information storage and the distribution of synaptic weights: perceptron versus Purkinje cell
    • Brunel N., Hakim V., Isope P., Nadal J.P., Barbour B. Optimal information storage and the distribution of synaptic weights: perceptron versus Purkinje cell. Neuron 2004, 43:745-757.
    • (2004) Neuron , vol.43 , pp. 745-757
    • Brunel, N.1    Hakim, V.2    Isope, P.3    Nadal, J.P.4    Barbour, B.5
  • 7
    • 0033959161 scopus 로고    scopus 로고
    • Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex
    • Gupta A., Wang Y., Markram H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 2000, 287:273-278.
    • (2000) Science , vol.287 , pp. 273-278
    • Gupta, A.1    Wang, Y.2    Markram, H.3
  • 9
    • 84983198485 scopus 로고    scopus 로고
    • Dynamic quantum-inspired particle swarm optimization as feature and parameter optimizer for evolving spiking neural networks
    • Hamed H.N.A., Kasabov N., Shamsuddin S.M. Dynamic quantum-inspired particle swarm optimization as feature and parameter optimizer for evolving spiking neural networks. International Journal of Modeling and Optimization 2012, 2:187-191.
    • (2012) International Journal of Modeling and Optimization , vol.2 , pp. 187-191
    • Hamed, H.N.A.1    Kasabov, N.2    Shamsuddin, S.M.3
  • 10
    • 80054761068 scopus 로고    scopus 로고
    • An extended evolving spiking neural network model for spatio-temporal pattern classification
    • In IEEE international joint conference on neural networks, IJCNN'2011
    • Hamed, H. N. A., Kasabov, N., Shamsuddin, S. M., Widiputra, H., & Dhoble, K. (2011). An extended evolving spiking neural network model for spatio-temporal pattern classification. In IEEE international joint conference on neural networks, IJCNN'2011 (pp. 2653-2656).
    • (2011) , pp. 2653-2656
    • Hamed, H.N.A.1    Kasabov, N.2    Shamsuddin, S.M.3    Widiputra, H.4    Dhoble, K.5
  • 11
    • 0037111840 scopus 로고    scopus 로고
    • Properties of unitary granule cell- >Purkinje cell synapses in adult rat cerebellar slices
    • Isope P., Barbour B. Properties of unitary granule cell- >Purkinje cell synapses in adult rat cerebellar slices. The Journal of Neuroscience 2002, 22:9668-9678.
    • (2002) The Journal of Neuroscience , vol.22 , pp. 9668-9678
    • Isope, P.1    Barbour, B.2
  • 12
    • 34249812051 scopus 로고    scopus 로고
    • From memory-based decisions to decision-based movements: a model of interval discrimination followed by action selection
    • Joshi P. From memory-based decisions to decision-based movements: a model of interval discrimination followed by action selection. Neural Networks 2007, 20:298-311.
    • (2007) Neural Networks , vol.20 , pp. 298-311
    • Joshi, P.1
  • 15
    • 70450237135 scopus 로고    scopus 로고
    • A simple rule for axon outgrowth and synaptic competition generates realistic connection lengths and filling fractions
    • Kaiser M., Hilgetag C.C., van Ooyen A. A simple rule for axon outgrowth and synaptic competition generates realistic connection lengths and filling fractions. Cerebral Cortex 2009, 19:3001-3010.
    • (2009) Cerebral Cortex , vol.19 , pp. 3001-3010
    • Kaiser, M.1    Hilgetag, C.C.2    van Ooyen, A.3
  • 17
    • 70649084995 scopus 로고    scopus 로고
    • To spike or not to spike: a probabilistic spiking neuron model
    • Kasabov N. To spike or not to spike: a probabilistic spiking neuron model. Neural Networks 2010, 23:16-19.
    • (2010) Neural Networks , vol.23 , pp. 16-19
    • Kasabov, N.1
  • 21
    • 33846543881 scopus 로고    scopus 로고
    • Edge of chaos and prediction of computational performance for neural circuit models
    • Legenstein R., Maass W. Edge of chaos and prediction of computational performance for neural circuit models. Neural Networks 2007, 20:323-334.
    • (2007) Neural Networks , vol.20 , pp. 323-334
    • Legenstein, R.1    Maass, W.2
  • 22
    • 0036834701 scopus 로고    scopus 로고
    • Real-time computing without stable states: a new framework for neural computation based on perturbations
    • Maass W., Natschläger T., Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Computation 2002, 14:2531-2560.
    • (2002) Neural Computation , vol.14 , pp. 2531-2560
    • Maass, W.1    Natschläger, T.2    Markram, H.3
  • 23
    • 33745023307 scopus 로고    scopus 로고
    • Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis
    • Micheloyannis S., Pachou E., Stam C.J., Vourkas M., Erimaki S., Tsirka V. Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neuroscience Letters 2006, 402:273-277.
    • (2006) Neuroscience Letters , vol.402 , pp. 273-277
    • Micheloyannis, S.1    Pachou, E.2    Stam, C.J.3    Vourkas, M.4    Erimaki, S.5    Tsirka, V.6
  • 26
    • 40649107671 scopus 로고    scopus 로고
    • Preparing more effective liquid state machines using hebbian learning
    • IEEE international joint conference on neural networks, IJCNN'06
    • Norton, D., & Ventura, D. (2006). Preparing more effective liquid state machines using hebbian learning. In IEEE international joint conference on neural networks, IJCNN'06 (pp. 4243-4248).
    • (2006) , pp. 4243-4248
    • Norton, D.1    Ventura, D.2
  • 27
    • 78650307382 scopus 로고    scopus 로고
    • Improving liquid state machines through iterative refinement of the reservoir
    • Norton D., Ventura D. Improving liquid state machines through iterative refinement of the reservoir. Neurocomputing 2010, 73:2893-2904.
    • (2010) Neurocomputing , vol.73 , pp. 2893-2904
    • Norton, D.1    Ventura, D.2
  • 28
    • 85180619257 scopus 로고    scopus 로고
    • Analyzing the dynamics of the simultaneous feature and parameter optimization of an evolving spiking neural network
    • In IEEE international joint conference on neural networks, IJCNN'2010
    • Schliebs, S., Defoin-Platel, M., & Kasabov, N. (2010). Analyzing the dynamics of the simultaneous feature and parameter optimization of an evolving spiking neural network. In IEEE international joint conference on neural networks, IJCNN'2010 (pp. 1-8).
    • (2010) , pp. 1-8
    • Schliebs, S.1    Defoin-Platel, M.2    Kasabov, N.3
  • 29
    • 80054744850 scopus 로고    scopus 로고
    • Are probabilistic spiking neural networks suitable for reservoir computing?
    • In IEEE international joint conference on neural networks, IJCNN'2011
    • Schliebs, S., Mohemmed, A., & Kasabov, N. (2011). Are probabilistic spiking neural networks suitable for reservoir computing? In IEEE international joint conference on neural networks, IJCNN'2011 (pp. 3156-3163).
    • (2011) , pp. 3156-3163
    • Schliebs, S.1    Mohemmed, A.2    Kasabov, N.3
  • 30
    • 40649092298 scopus 로고    scopus 로고
    • Compact hardware liquid state machines on FPGA for real-time speech recognition
    • Schrauwen B., D'Haene M., Verstraeten D., Campenhout J.V. Compact hardware liquid state machines on FPGA for real-time speech recognition. Neural Networks 2008, 21:511-523.
    • (2008) Neural Networks , vol.21 , pp. 511-523
    • Schrauwen, B.1    D'Haene, M.2    Verstraeten, D.3    Campenhout, J.V.4
  • 31
    • 13144282731 scopus 로고    scopus 로고
    • Fastest learning in small-world neural networks
    • Simard D., Nadeau L., Kröger H. Fastest learning in small-world neural networks. Physics Letters A 2005, 336:8-15.
    • (2005) Physics Letters A , vol.336 , pp. 8-15
    • Simard, D.1    Nadeau, L.2    Kröger, H.3
  • 32
  • 33
    • 0347914619 scopus 로고    scopus 로고
    • Functional connectivity patterns of human magnetoencephalographic recordings: a 'small-world' network?
    • Stam C.J. Functional connectivity patterns of human magnetoencephalographic recordings: a 'small-world' network?. Neuroscience Letters 2004, 355:25-28.
    • (2004) Neuroscience Letters , vol.355 , pp. 25-28
    • Stam, C.J.1
  • 34
    • 0036594106 scopus 로고    scopus 로고
    • Evolving neural networks through augmenting topologies
    • Stanley K.O., Miikkulainen R. Evolving neural networks through augmenting topologies. Evolutionary Computation 2002, 10:99-127.
    • (2002) Evolutionary Computation , vol.10 , pp. 99-127
    • Stanley, K.O.1    Miikkulainen, R.2
  • 35
    • 37849189858 scopus 로고    scopus 로고
    • Estimating the number of hidden neurons in a feedforward network using the singular value decomposition
    • Teoh E.J., Tan K.C., Xiang C. Estimating the number of hidden neurons in a feedforward network using the singular value decomposition. IEEE Transactions on Neural Networks 2006, 17:1623-1629.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , pp. 1623-1629
    • Teoh, E.J.1    Tan, K.C.2    Xiang, C.3
  • 38
    • 84859922290 scopus 로고    scopus 로고
    • Neural networks with small-world topology are optimal for encoding based on spatiotemporal patterns of spikes
    • Vertes P., Duke T. Neural networks with small-world topology are optimal for encoding based on spatiotemporal patterns of spikes. BMC Neuroscience 2009, 10:O11.
    • (2009) BMC Neuroscience , vol.10
    • Vertes, P.1    Duke, T.2
  • 39
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of 'small-world' networks
    • Watts D.J., Strogatz S.H. Collective dynamics of 'small-world' networks. Nature 1998, 393:440-442.
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 40
    • 77955058561 scopus 로고    scopus 로고
    • Evolving spiking neural networks for audiovisual information processing
    • Wysoski S.G., Benuskova L., Kasabov N. Evolving spiking neural networks for audiovisual information processing. Neural Networks 2010, 23:819-835.
    • (2010) Neural Networks , vol.23 , pp. 819-835
    • Wysoski, S.G.1    Benuskova, L.2    Kasabov, N.3
  • 42
    • 34249829232 scopus 로고    scopus 로고
    • The cerebellum as a liquid state machine
    • Yamazaki T., Tanaka S. The cerebellum as a liquid state machine. Neural Networks 2007, 20:290-297.
    • (2007) Neural Networks , vol.20 , pp. 290-297
    • Yamazaki, T.1    Tanaka, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.