메뉴 건너뛰기




Volumn 73, Issue 16-18, 2010, Pages 2893-2904

Improving liquid state machines through iterative refinement of the reservoir

Author keywords

Liquid state machine; Recurrent network; Spiking neural network

Indexed keywords

DATA SETS; HEBBIAN; ITERATIVE REFINEMENT; LIQUID STATE MACHINES; MACHINE LEARNERS; NOVEL ALGORITHM; PATTERN RECOGNITION PROBLEMS; RECURRENT NETWORKS; SPIKING NEURAL NETWORKS;

EID: 78650307382     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.08.005     Document Type: Article
Times cited : (46)

References (28)
  • 1
    • 78650307164 scopus 로고    scopus 로고
    • W. Gerstner, W. Kistler (Eds.) Spiking Neuron Models, Cambridge University Press, New York,
    • W. Gerstner, W. Kistler (Eds.), Spiking Neuron Models, Cambridge University Press, New York, 2002.
    • (2002)
  • 2
    • 78650307326 scopus 로고    scopus 로고
    • Spiking neural networks, Ph.D. Thesis, Centre for Mathematics and Computer Science,
    • S.M. Bohte, Spiking neural networks, Ph.D. Thesis, Centre for Mathematics and Computer Science, 2003.
    • (2003)
    • Bohte, S.M.1
  • 3
    • 0031472340 scopus 로고    scopus 로고
    • Networks of spiking neurons: the third generation of neural network models
    • Maass W. Networks of spiking neurons: the third generation of neural network models. Neural Networks 1997, 10(9):1659-1671.
    • (1997) Neural Networks , vol.10 , Issue.9 , pp. 1659-1671
    • Maass, W.1
  • 4
    • 0036826068 scopus 로고    scopus 로고
    • Error-backpropagation in temporally encoded networks of spiking neurons
    • Bohte S.M., Kok J.N., Poutré H.L. Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 2001, 48:17-37.
    • (2001) Neurocomputing , vol.48 , pp. 17-37
    • Bohte, S.M.1    Kok, J.N.2    Poutré, H.L.3
  • 5
    • 23844463151 scopus 로고    scopus 로고
    • A gradient descent rule for spiking neurons emitting multiple spikes
    • Booij O., Nguyen H.T. A gradient descent rule for spiking neurons emitting multiple spikes. Information Processing Letters 2005, 95:552-558.
    • (2005) Information Processing Letters , vol.95 , pp. 552-558
    • Booij, O.1    Nguyen, H.T.2
  • 6
    • 78650307019 scopus 로고    scopus 로고
    • Neural micro circuits,,
    • T. Natschläger, Neural micro circuits, 2005. http://www.lsm.tugraz.at/index.html.
    • (2005)
    • Natschläger, T.1
  • 7
    • 28644443983 scopus 로고    scopus 로고
    • Computer models and analysis tools for neural microcircuits
    • Kluwer Academic Publishers, (Chapter 9)
    • Natschläger T., Maass W., Markram H. Computer models and analysis tools for neural microcircuits. Neuroscience Databases. A Practical Guide 2003, 123-138. Kluwer Academic Publishers, (Chapter 9).
    • (2003) Neuroscience Databases. A Practical Guide , pp. 123-138
    • Natschläger, T.1    Maass, W.2    Markram, H.3
  • 8
    • 78650310611 scopus 로고    scopus 로고
    • A tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the "echo state network" approach, Technical Report, International University Bremen,
    • H. Jaeger, A tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the "echo state network" approach, Technical Report, International University Bremen, 2005.
    • (2005)
    • Jaeger, H.1
  • 10
    • 33846556028 scopus 로고    scopus 로고
    • Computational aspects of feedback in neural circuits
    • Maass W., Joshi P., Sontag E.D. Computational aspects of feedback in neural circuits. PLoS Computational Biology 2007, 3(1:e165):1-20.
    • (2007) PLoS Computational Biology , vol.3 , Issue.1-165 , pp. 1-20
    • Maass, W.1    Joshi, P.2    Sontag, E.D.3
  • 11
    • 0036834701 scopus 로고    scopus 로고
    • Real-time computing without stable states: a new framework for neural computations based on perturbations
    • Maass W., Natschläger T., Markram H. Real-time computing without stable states: a new framework for neural computations based on perturbations. Neural Computation 2002, 14(11):2531-2560.
    • (2002) Neural Computation , vol.14 , Issue.11 , pp. 2531-2560
    • Maass, W.1    Natschläger, T.2    Markram, H.3
  • 12
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication
    • Jaeger H., Haas H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 2004, 78-80.
    • (2004) Science , pp. 78-80
    • Jaeger, H.1    Haas, H.2
  • 18
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R.A. The use of multiple measurements in taxonomic problems. Annals of Eugenics 1936, 7:179-188.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 19
    • 84898962053 scopus 로고    scopus 로고
    • Methods for estimating the computational power and generalization capability of neural microcircuits
    • Maass W., Bertschinger N., Legenstein R. Methods for estimating the computational power and generalization capability of neural microcircuits. Advances in Neural Information Processing Systems 2005, 17:865-872.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 865-872
    • Maass, W.1    Bertschinger, N.2    Legenstein, R.3
  • 20
    • 42749103295 scopus 로고    scopus 로고
    • Self-organized critical neural networks
    • Bornholdt S., Röhl T. Self-organized critical neural networks. Physical Review E 2003, 67.
    • (2003) Physical Review E , vol.67
    • Bornholdt, S.1    Röhl, T.2
  • 22
    • 2942552269 scopus 로고    scopus 로고
    • Real-time computation at the edge of chaos in recurrent neural networks
    • Bertschinger N., Natschläger T. Real-time computation at the edge of chaos in recurrent neural networks. Neural Computation 2004, 16(7):1413-1436.
    • (2004) Neural Computation , vol.16 , Issue.7 , pp. 1413-1436
    • Bertschinger, N.1    Natschläger, T.2
  • 24
    • 0342990011 scopus 로고    scopus 로고
    • An analysis of noise in recurrent neural networks: convergence and generalization
    • Jim K., Giles C.L., Horne B.G. An analysis of noise in recurrent neural networks: convergence and generalization. IEEE Transactions on Neural Networks 1996, 7:1424-1438.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , pp. 1424-1438
    • Jim, K.1    Giles, C.L.2    Horne, B.G.3
  • 25
    • 78650306974 scopus 로고
    • Timit acoustic-phonetic continuous speech corpus, linguistic Data Consortium, Philadelphia,
    • J.S. Garofolo, et al., Timit acoustic-phonetic continuous speech corpus, linguistic Data Consortium, Philadelphia, 1993. http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1.
    • (1993)
    • Garofolo J.S.et, al.1
  • 26
    • 78650304770 scopus 로고    scopus 로고
    • ETSI ES 202 212STQ: DSR, Extended advanced front-end feature extraction algorithm; compression algorithms; back-end speech reconstruction algorithm, Technical Report, European Telecommunications Standards Institute (ETSI),
    • ETSI ES 202 212STQ: DSR, Extended advanced front-end feature extraction algorithm; compression algorithms; back-end speech reconstruction algorithm, Technical Report, European Telecommunications Standards Institute (ETSI), 2003.
    • (2003)
  • 27
    • 0003901612 scopus 로고    scopus 로고
    • Kluwer Academic Publishers, S. Thrun, L. Pratt (Eds.)
    • Learning to Learn 1998, Kluwer Academic Publishers. S. Thrun, L. Pratt (Eds.).
    • (1998) Learning to Learn
  • 28
    • 78650306621 scopus 로고    scopus 로고
    • Learning to learn and collaborative filtering, Neural Information Processing Systems workshop "Inductive Transfer: 10 Years Later", 2005.
    • K. Yu, V. Tresp, Learning to learn and collaborative filtering, Neural Information Processing Systems workshop "Inductive Transfer: 10 Years Later", 2005.
    • Yu, K.1    Tresp, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.