메뉴 건너뛰기




Volumn 24, Issue 9, 2012, Pages 2434-2456

Bayesian community detection

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; BAYES THEOREM; COMMUNITY CARE; HUMAN; PROBABILITY; SIGNAL TRANSDUCTION;

EID: 84870691266     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00314     Document Type: Article
Times cited : (47)

References (30)
  • 2
    • 43049151837 scopus 로고    scopus 로고
    • Hierarchical structure and the prediction of missing links in networks
    • Clauset, A., Moore, C., & Newman, M. E. J. (2008). Hierarchical structure and the prediction of missing links in networks. Nature, 453(7191), 98-101.
    • (2008) Nature , vol.453 , Issue.7191 , pp. 98-101
    • Clauset, A.1    Moore, C.2    Newman, M.E.J.3
  • 3
    • 4544322768 scopus 로고
    • The incomplete beta function: A historical profile
    • Dutka, J. (1981). The incomplete beta function: A historical profile. Archive for History of Exact Sciences, 24, 11-29.
    • (1981) Archive for History of Exact Sciences , vol.24 , pp. 11-29
    • Dutka, J.1
  • 4
    • 74049087026 scopus 로고    scopus 로고
    • Community detection in graphs
    • Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3-5), 75-174.
    • (2010) Physics Reports , vol.486 , Issue.3-5 , pp. 75-174
    • Fortunato, S.1
  • 6
    • 84899006824 scopus 로고    scopus 로고
    • Euclidean embedding of co-occurrence data
    • L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Cambridge, MA: MIT Press
    • Globerson, A., Chechik, G., Pereira, F., & Tishby, N. (2005). Euclidean embedding of co-occurrence data. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems, 17 (pp. 497-504). Cambridge, MA: MIT Press.
    • (2005) Advances in neural information processing systems , vol.17 , pp. 497-504
    • Globerson, A.1    Chechik, G.2    Pereira, F.3    Tishby, N.4
  • 7
    • 53149136598 scopus 로고    scopus 로고
    • The art of community detection
    • Gulbahce, N., & Lehmann, S. (2008). The art of community detection. BioEssays, 30(10), 934-938.
    • (2008) BioEssays , vol.30 , Issue.10 , pp. 934-938
    • Gulbahce, N.1    Lehmann, S.2
  • 8
    • 45749117949 scopus 로고    scopus 로고
    • Bayesian approach to network modularity
    • Hofman, J. M., & Wiggins, C. H. (2008). Bayesian approach to network modularity. Physical Review Letters, 100(25), 258701.
    • (2008) Physical Review Letters , vol.100 , Issue.25 , pp. 258701
    • Hofman, J.M.1    Wiggins, C.H.2
  • 9
    • 1842486852 scopus 로고    scopus 로고
    • A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model
    • Jain, S., & Neal, R. M. (2004). A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model. Journal of Computational and Graphical Statistics, 13(1), 158-182.
    • (2004) Journal of Computational and Graphical Statistics , vol.13 , Issue.1 , pp. 158-182
    • Jain, S.1    Neal, R.M.2
  • 10
    • 43049089442 scopus 로고    scopus 로고
    • Robustness of community structure in networks
    • Karrer, B., Levina, E.,&Newman, M. E. J. (2008). Robustness of community structure in networks. Physical Review E, 77(4), 1-10.
    • (2008) Physical Review E , vol.77 , Issue.4 , pp. 1-10
    • Karrer, B.1    Levina, E.2    Newman, M.E.J.3
  • 11
    • 79951710564 scopus 로고    scopus 로고
    • Stochastic blockmodels and community structure in networks
    • Karrer, B., & Newman, M. E. J. (2011). Stochastic blockmodels and community structure in networks. Physical Review E, 83(1), 016107.
    • (2011) Physical Review E , vol.83 , Issue.1 , pp. 016107
    • Karrer, B.1    Newman, M.E.J.2
  • 14
  • 16
    • 79951739147 scopus 로고    scopus 로고
    • Nonparametric latent feature models for link prediction
    • Y. Bengio, D. Schuurmans, J. Lafferty, C.K.I.Williams, & A. Culotta (Eds.), Red Hook, NY: Curran Associates
    • Miller, K. T., Griffiths, T. L.,&Jordan, M. I. (2009). Nonparametric latent feature models for link prediction. In Y. Bengio, D. Schuurmans, J. Lafferty, C.K.I.Williams, & A. Culotta (Eds.), Advances in neural information processing systems, 22 (pp. 1276-1284). Red Hook, NY: Curran Associates.
    • (2009) Advances in neural information processing systems , vol.22 , pp. 1276-1284
    • Miller, K.T.1    Griffiths, T.L.2    Jordan, M.I.3
  • 19
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9, 249-265.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , pp. 249-265
    • Neal, R.M.1
  • 20
    • 37649028224 scopus 로고    scopus 로고
    • Finding and evaluating community structure in networks
    • 026113-1-15
    • Newman, M. E. J.,& Girvan, M. (2004). Finding and evaluating community structure in networks. Phys. Rev. E, 69(2), 026113-1-15.
    • (2004) Phys. Rev. E , vol.69 , Issue.2
    • Newman, M.E.J.1    Girvan, M.2
  • 23
    • 34250655368 scopus 로고    scopus 로고
    • An information-theoretic framework for resolving community structure in complex networks
    • Rosvall, M., & Bergstrom, C. T. (2007). An information-theoretic framework for resolving community structure in complex networks. Proceedings of the National Academy of Sciences, 104(18), 7327-7331.
    • (2007) Proceedings of the National Academy of Sciences , vol.104 , Issue.18 , pp. 7327-7331
    • Rosvall, M.1    Bergstrom, C.T.2
  • 25
    • 0038074373 scopus 로고    scopus 로고
    • Topological structure analysis of the protein-protein interaction network in budding yeast
    • Sun, S., Ling, L., Zhang, N., Li, G.,& Chen, R. (2003). Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acids Research, 31(9), 2443-2450.
    • (2003) Nucleic Acids Research , vol.31 , Issue.9 , pp. 2443-2450
    • Sun, S.1    Ling, L.2    Zhang, N.3    Li, G.4    Chen, R.5
  • 26
    • 84858720748 scopus 로고    scopus 로고
    • Modelling relational data using Bayesian clustered tensor factorization
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Red Hook, NY: Curran Associates
    • Sutskever, I., Salakhutdinov, R., & Tenenbaum, J. (2009). Modelling relational data using Bayesian clustered tensor factorization. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in neural information processing systems, 22 (pp. 1821-1828). Red Hook, NY: Curran Associates.
    • (2009) Advances in neural information processing systems , vol.22 , pp. 1821-1828
    • Sutskever, I.1    Salakhutdinov, R.2    Tenenbaum, J.3
  • 27
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4), 395-416.
    • (2007) Statistics and Computing , vol.17 , Issue.4 , pp. 395-416
    • Von Luxburg, U.1
  • 28
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of "small-world" networks
    • Watts, D. J.,& Strogatz, S. H. (1998). Collective dynamics of "small-world" networks. Nature, 393(6684), 440-442.
    • (1998) Nature , vol.393 , Issue.6684 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 29
    • 0000949404 scopus 로고
    • The use of incomplete beta functions for prior distributions in binomial sampling
    • Weiler, H. (1965). The use of incomplete beta functions for prior distributions in binomial sampling. Technometrics, 7, 335-347.
    • (1965) Technometrics , vol.7 , pp. 335-347
    • Weiler, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.