메뉴 건너뛰기




Volumn , Issue , 2012, Pages 3-10

Modeling topic trends on the social web using temporal signatures

Author keywords

Change point analysis; Collaborative tagging; Social web; Trend detection

Indexed keywords

CHANGE-POINT ANALYSIS; COLLABORATIVE TAGGING; DYNAMIC SEGMENTATION; EBB-AND-FLOW; EMERGENT BEHAVIORS; FREQUENCY DATA; PARTITIONING AROUND MEDOIDS; SOCIAL WEB; TAGGING SYSTEMS; TEMPORAL SIGNATURES; TEXT SOURCES; TREND DETECTION; WEB-BASED INFORMATION;

EID: 84870567277     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2389936.2389940     Document Type: Conference Paper
Times cited : (6)

References (30)
  • 3
    • 0024541195 scopus 로고
    • Algorithms for the optimal identification of segment neighborhoods
    • I. E. Auger and C. E. Lawrence. Algorithms for the optimal identification of segment neighborhoods. In Bulletin of Mathematical Biology, volume 51, pages 39-54. Pergamon Press plc, 1989. (Pubitemid 19036571)
    • (1989) Bulletin of Mathematical Biology , vol.51 , Issue.1 , pp. 39-54
    • Auger, I.E.1    Lawrence, C.E.2
  • 4
    • 85055383820 scopus 로고    scopus 로고
    • Insights into internet memes
    • The AAAI Press
    • C. Bauckhage. Insights into internet memes. In ICWSM. The AAAI Press, 2011.
    • (2011) ICWSM
    • Bauckhage, C.1
  • 6
    • 84867136666 scopus 로고    scopus 로고
    • Querying and mining of time series data: Experimental comparison of representations and distance measures
    • Aug.
    • H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endow., 1(2):1542-1552, Aug. 2008.
    • (2008) Proc. VLDB Endow. , vol.1 , Issue.2 , pp. 1542-1552
    • Ding, H.1    Trajcevski, G.2    Scheuermann, P.3    Wang, X.4    Keogh, E.5
  • 8
    • 52949087226 scopus 로고    scopus 로고
    • A fast bayesian change point analysis for the segmentation of microarray data
    • Oct.
    • C. Erdman and J. W. Emerson. A fast bayesian change point analysis for the segmentation of microarray data. Bioinformatics, 24(19):2143-2148, Oct. 2008.
    • (2008) Bioinformatics , vol.24 , Issue.19 , pp. 2143-2148
    • Erdman, C.1    Emerson, J.W.2
  • 11
    • 75149137953 scopus 로고    scopus 로고
    • Bayesmotif: De novo protein sorting motif discovery from impure datasets
    • J. Hu and F. Zhang. Bayesmotif: de novo protein sorting motif discovery from impure datasets. BMC Bioinformatics, 11(S-1):66, 2010.
    • (2010) BMC Bioinformatics , vol.11 , Issue.S1 , pp. 66
    • Hu, J.1    Zhang, F.2
  • 12
    • 84855311713 scopus 로고    scopus 로고
    • Clustering time series data stream - A literature survey
    • abs/1005.4270
    • V. Kavitha and M. Punithavalli. Clustering time series data stream - a literature survey. CoRR, abs/1005.4270, 2010.
    • (2010) CoRR
    • Kavitha, V.1    Punithavalli, M.2
  • 13
    • 78149351008 scopus 로고    scopus 로고
    • Clustering of time series subsequences is meaningless: Implications for previous and future research
    • Washington, DC, USA, IEEE Computer Society
    • E. Keogh, J. Lin, and W. Truppel. Clustering of time series subsequences is meaningless: Implications for previous and future research. In Proceedings of the Third IEEE International Conference on Data Mining, ICDM '03, pages 115-, Washington, DC, USA, 2003. IEEE Computer Society.
    • (2003) Proceedings of the Third IEEE International Conference on Data Mining, ICDM '03 , pp. 115
    • Keogh, E.1    Lin, J.2    Truppel, W.3
  • 14
    • 77955557073 scopus 로고    scopus 로고
    • Detection of changes in variance of oceanographic time-series using changepoint analysis
    • R. Killick, I. A. Eckley, K. Ewans, and J. Philip. Detection of changes in variance of oceanographic time-series using changepoint analysis. Ocean Engineering, 37, 2010.
    • (2010) Ocean Engineering , vol.37
    • Killick, R.1    Eckley, I.A.2    Ewans, K.3    Philip, J.4
  • 15
    • 38349011236 scopus 로고    scopus 로고
    • Detection of uterine mmg contractions using a multiple change point estimator and the k-means cluster algorithm
    • Feb.
    • P. La Rosa, A. Nehorai, H. Eswaran, C. Lowery, and H. Preissl. Detection of uterine mmg contractions using a multiple change point estimator and the k-means cluster algorithm. Biomedical Engineering, IEEE Transactions on, 55(2):453 -467, Feb. 2008.
    • (2008) Biomedical Engineering, IEEE Transactions on , vol.55 , Issue.2 , pp. 453-467
    • La Rosa, P.1    Nehorai, A.2    Eswaran, H.3    Lowery, C.4    Preissl, H.5
  • 16
    • 84880120928 scopus 로고    scopus 로고
    • Online discovery of top-k similar motifs in time series data
    • SIAM / Omnipress
    • H. T. Lam, T. Calders, and N. Pham. Online discovery of top-k similar motifs in time series data. In SDM, pages 1004-1015. SIAM / Omnipress, 2011.
    • (2011) SDM , pp. 1004-1015
    • Lam, H.T.1    Calders, T.2    Pham, N.3
  • 18
    • 34548093287 scopus 로고    scopus 로고
    • Experiencing SAX: A novel symbolic representation of time series
    • DOI 10.1007/s10618-007-0064-z
    • J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing sax: a novel symbolic representation of time series. Data Mining and Knowledge Discovery, 15(2):107-144, Oct. 2007. (Pubitemid 47293484)
    • (2007) Data Mining and Knowledge Discovery , vol.15 , Issue.2 , pp. 107-144
    • Lin, J.1    Keogh, E.2    Wei, L.3    Lonardi, S.4
  • 21
    • 84942845956 scopus 로고    scopus 로고
    • Topic detection, tracking, and trend analysis using self-organizing neural networks
    • Advances in Knowledge Discovery and Data Mining 5th Pacific-Asia Conference, PAKDD 2001 Hong Kong, China, April 16-18, 2001 Proceedings
    • K. Rajaraman and A.-H. Tan. Topic detection, tracking, and trend analysis using self-organizing neural networks. In Proceedings of the 5th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD '01, pages 102-107, London, UK, UK, 2001. Springer-Verlag. (Pubitemid 33255099)
    • (2001) Lecture Notes in Computer Science , Issue.2035 , pp. 102-107
    • Rajaraman, K.1    Tan, A.-H.2
  • 23
    • 84870539990 scopus 로고    scopus 로고
    • Trends predicting of topics on twitter based on macd
    • L. Rong, X. Zhiheng, Z. Yang, and Y. Qing. Trends predicting of topics on twitter based on macd. In IPCSIT, volume 25, 2012.
    • (2012) IPCSIT , vol.25
    • Rong, L.1    Zhiheng, X.2    Yang, Z.3    Qing, Y.4
  • 25
    • 84870545515 scopus 로고    scopus 로고
    • Trend prediction in social bookmark service using time series of bookmarks
    • M. Takashi and Y. Masatoshi. Trend prediction in social bookmark service using time series of bookmarks. In DEWS, volume 2, 2008.
    • (2008) DEWS , vol.2
    • Takashi, M.1    Masatoshi, Y.2
  • 27
    • 33749565782 scopus 로고    scopus 로고
    • Topics over time: A non-markov continuous-time model of topical trends
    • X. Wang and A. Mccallum. Topics over time: A non-markov continuous-time model of topical trends. In in SIGKDD, 2006.
    • (2006) SIGKDD
    • Wang, X.1    McCallum, A.2
  • 28
    • 24044470614 scopus 로고    scopus 로고
    • Clustering of time series data - A survey
    • DOI 10.1016/j.patcog.2005.01.025, PII S0031320305001305
    • T. Warren Liao. Clustering of time series data-a survey. Pattern Recogn., 38(11):1857-1874, Nov. 2005. (Pubitemid 41214630)
    • (2005) Pattern Recognition , vol.38 , Issue.11 , pp. 1857-1874
    • Warren Liao, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.