-
1
-
-
84870573872
-
Modeling spread of ideas in online social networks
-
Darlinghurst, Australia, Australia, 2006. Australian Computer Society, Inc
-
M. A. Ahmad and A. Teredesai. Modeling spread of ideas in online social networks. In Proceedings of the fifth Australasian conference on Data mining and analystics - Volume 61, AusDM '06, pages 185-190, Darlinghurst, Australia, Australia, 2006. Australian Computer Society, Inc.
-
Proceedings of the Fifth Australasian Conference on Data Mining and Analystics - Volume 61, AusDM '06
, pp. 185-190
-
-
Ahmad, M.A.1
Teredesai, A.2
-
2
-
-
67049100147
-
On-line lda: Adaptive topic models for mining text streams with applications to topic detection and tracking
-
L. AlSumait, D. Barbara, and C. Domeniconi. On-line lda: Adaptive topic models for mining text streams with applications to topic detection and tracking. In Data Mining, 2008. ICDM '08. Eighth IEEE International Conference on, pages 3 -12, 2008.
-
(2008)
Data Mining, 2008. ICDM '08. Eighth IEEE International Conference on
, pp. 3-12
-
-
Alsumait, L.1
Barbara, D.2
Domeniconi, C.3
-
3
-
-
0024541195
-
Algorithms for the optimal identification of segment neighborhoods
-
I. E. Auger and C. E. Lawrence. Algorithms for the optimal identification of segment neighborhoods. In Bulletin of Mathematical Biology, volume 51, pages 39-54. Pergamon Press plc, 1989. (Pubitemid 19036571)
-
(1989)
Bulletin of Mathematical Biology
, vol.51
, Issue.1
, pp. 39-54
-
-
Auger, I.E.1
Lawrence, C.E.2
-
4
-
-
85055383820
-
Insights into internet memes
-
The AAAI Press
-
C. Bauckhage. Insights into internet memes. In ICWSM. The AAAI Press, 2011.
-
(2011)
ICWSM
-
-
Bauckhage, C.1
-
5
-
-
84865082014
-
The japanese economy in crises: A time series segmentation study
-
S. A. Cheong, R. P. Fornia, G. H. T. Lee, J. L. Kok, W. S. Yim, D. Y. Xu, and Y. Zhang. The japanese economy in crises: A time series segmentation study. Economics: The Open-Access, Open-Assessment E-Journal, 6(2012-5), 2012.
-
(2012)
Economics: The Open-Access, Open-Assessment E-Journal
, vol.6
, Issue.2012-2015
-
-
Cheong, S.A.1
Fornia, R.P.2
Lee, G.H.T.3
Kok, J.L.4
Yim, W.S.5
Xu, D.Y.6
Zhang, Y.7
-
6
-
-
84867136666
-
Querying and mining of time series data: Experimental comparison of representations and distance measures
-
Aug.
-
H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endow., 1(2):1542-1552, Aug. 2008.
-
(2008)
Proc. VLDB Endow.
, vol.1
, Issue.2
, pp. 1542-1552
-
-
Ding, H.1
Trajcevski, G.2
Scheuermann, P.3
Wang, X.4
Keogh, E.5
-
8
-
-
52949087226
-
A fast bayesian change point analysis for the segmentation of microarray data
-
Oct.
-
C. Erdman and J. W. Emerson. A fast bayesian change point analysis for the segmentation of microarray data. Bioinformatics, 24(19):2143-2148, Oct. 2008.
-
(2008)
Bioinformatics
, vol.24
, Issue.19
, pp. 2143-2148
-
-
Erdman, C.1
Emerson, J.W.2
-
9
-
-
57049102790
-
A knowledge discovery framework for learning task models from user interactions in intelligent tutoring systems
-
Berlin, Heidelberg, Springer-Verlag
-
P. Fournier-Viger, R. Nkambou, and E. M. Nguifo. A knowledge discovery framework for learning task models from user interactions in intelligent tutoring systems. In Proceedings of the 7th Mexican International Conference on Artificial Intelligence: Advances in Artificial Intelligence, MICAI '08, pages 765-778, Berlin, Heidelberg, 2008. Springer-Verlag.
-
(2008)
Proceedings of the 7th Mexican International Conference on Artificial Intelligence: Advances in Artificial Intelligence, MICAI '08
, pp. 765-778
-
-
Fournier-Viger, P.1
Nkambou, R.2
Nguifo, E.M.3
-
10
-
-
84863155666
-
How does research evolve? pattern mining for research meme cycles
-
Dec.
-
D. He, X. Zhu, and D. Parker. How does research evolve? pattern mining for research meme cycles. In Data Mining (ICDM), 2011 IEEE 11th International Conference on, pages 1068 -1073, Dec. 2011.
-
(2011)
Data Mining (ICDM), 2011 IEEE 11th International Conference on
, pp. 1068-1073
-
-
He, D.1
Zhu, X.2
Parker, D.3
-
11
-
-
75149137953
-
Bayesmotif: De novo protein sorting motif discovery from impure datasets
-
J. Hu and F. Zhang. Bayesmotif: de novo protein sorting motif discovery from impure datasets. BMC Bioinformatics, 11(S-1):66, 2010.
-
(2010)
BMC Bioinformatics
, vol.11
, Issue.S1
, pp. 66
-
-
Hu, J.1
Zhang, F.2
-
12
-
-
84855311713
-
Clustering time series data stream - A literature survey
-
abs/1005.4270
-
V. Kavitha and M. Punithavalli. Clustering time series data stream - a literature survey. CoRR, abs/1005.4270, 2010.
-
(2010)
CoRR
-
-
Kavitha, V.1
Punithavalli, M.2
-
13
-
-
78149351008
-
Clustering of time series subsequences is meaningless: Implications for previous and future research
-
Washington, DC, USA, IEEE Computer Society
-
E. Keogh, J. Lin, and W. Truppel. Clustering of time series subsequences is meaningless: Implications for previous and future research. In Proceedings of the Third IEEE International Conference on Data Mining, ICDM '03, pages 115-, Washington, DC, USA, 2003. IEEE Computer Society.
-
(2003)
Proceedings of the Third IEEE International Conference on Data Mining, ICDM '03
, pp. 115
-
-
Keogh, E.1
Lin, J.2
Truppel, W.3
-
14
-
-
77955557073
-
Detection of changes in variance of oceanographic time-series using changepoint analysis
-
R. Killick, I. A. Eckley, K. Ewans, and J. Philip. Detection of changes in variance of oceanographic time-series using changepoint analysis. Ocean Engineering, 37, 2010.
-
(2010)
Ocean Engineering
, vol.37
-
-
Killick, R.1
Eckley, I.A.2
Ewans, K.3
Philip, J.4
-
15
-
-
38349011236
-
Detection of uterine mmg contractions using a multiple change point estimator and the k-means cluster algorithm
-
Feb.
-
P. La Rosa, A. Nehorai, H. Eswaran, C. Lowery, and H. Preissl. Detection of uterine mmg contractions using a multiple change point estimator and the k-means cluster algorithm. Biomedical Engineering, IEEE Transactions on, 55(2):453 -467, Feb. 2008.
-
(2008)
Biomedical Engineering, IEEE Transactions on
, vol.55
, Issue.2
, pp. 453-467
-
-
La Rosa, P.1
Nehorai, A.2
Eswaran, H.3
Lowery, C.4
Preissl, H.5
-
16
-
-
84880120928
-
Online discovery of top-k similar motifs in time series data
-
SIAM / Omnipress
-
H. T. Lam, T. Calders, and N. Pham. Online discovery of top-k similar motifs in time series data. In SDM, pages 1004-1015. SIAM / Omnipress, 2011.
-
(2011)
SDM
, pp. 1004-1015
-
-
Lam, H.T.1
Calders, T.2
Pham, N.3
-
17
-
-
71049177089
-
Meme-tracking and the dynamics of the news cycle
-
ACM New York, NY, USA
-
J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-tracking and the Dynamics of the News Cycle. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 497-506. ACM New York, NY, USA, 2009.
-
(2009)
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 497-506
-
-
Leskovec, J.1
Backstrom, L.2
Kleinberg, J.3
-
18
-
-
34548093287
-
Experiencing SAX: A novel symbolic representation of time series
-
DOI 10.1007/s10618-007-0064-z
-
J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing sax: a novel symbolic representation of time series. Data Mining and Knowledge Discovery, 15(2):107-144, Oct. 2007. (Pubitemid 47293484)
-
(2007)
Data Mining and Knowledge Discovery
, vol.15
, Issue.2
, pp. 107-144
-
-
Lin, J.1
Keogh, E.2
Wei, L.3
Lonardi, S.4
-
19
-
-
79953844923
-
Hip and trendy: Characterizing emerging trends on twitter
-
M. Naaman, H. Becker, and L. Gravano. Hip and trendy: Characterizing emerging trends on twitter. Journal of the American Society for Information Science and Technology, 62(5):902-918, 2011.
-
(2011)
Journal of the American Society for Information Science and Technology
, vol.62
, Issue.5
, pp. 902-918
-
-
Naaman, M.1
Becker, H.2
Gravano, L.3
-
20
-
-
37249046121
-
Inaccuracies of shape averaging method using dynamic time warping for time series data
-
Computational Science - ICCS 2007 - 7th International Conference, Proceedings, Part I
-
V. Niennattrakul and C. A. Ratanamahatana. Inaccuracies of shape averaging method using dynamic time warping for time series data. In Proceedings of the 7th international conference on Computational Science, Part I: ICCS 2007, ICCS '07, pages 513-520, Berlin, Heidelberg, 2007. Springer-Verlag. (Pubitemid 350269685)
-
(2007)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.4487
, pp. 513-520
-
-
Niennattrakul, V.1
Ratanamahatana, C.A.2
-
21
-
-
84942845956
-
Topic detection, tracking, and trend analysis using self-organizing neural networks
-
Advances in Knowledge Discovery and Data Mining 5th Pacific-Asia Conference, PAKDD 2001 Hong Kong, China, April 16-18, 2001 Proceedings
-
K. Rajaraman and A.-H. Tan. Topic detection, tracking, and trend analysis using self-organizing neural networks. In Proceedings of the 5th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD '01, pages 102-107, London, UK, UK, 2001. Springer-Verlag. (Pubitemid 33255099)
-
(2001)
Lecture Notes in Computer Science
, Issue.2035
, pp. 102-107
-
-
Rajaraman, K.1
Tan, A.-H.2
-
22
-
-
85100558628
-
Detecting and tracking political abuse in social media
-
J. Ratkiewicz, M. Conover, M. Meiss, B. Goncalves, A. Flammini, and F. Menczer. Detecting and tracking political abuse in social media. In ICWSM, 2011.
-
(2011)
ICWSM
-
-
Ratkiewicz, J.1
Conover, M.2
Meiss, M.3
Goncalves, B.4
Flammini, A.5
Menczer, F.6
-
23
-
-
84870539990
-
Trends predicting of topics on twitter based on macd
-
L. Rong, X. Zhiheng, Z. Yang, and Y. Qing. Trends predicting of topics on twitter based on macd. In IPCSIT, volume 25, 2012.
-
(2012)
IPCSIT
, vol.25
-
-
Rong, L.1
Zhiheng, X.2
Yang, Z.3
Qing, Y.4
-
25
-
-
84870545515
-
Trend prediction in social bookmark service using time series of bookmarks
-
M. Takashi and Y. Masatoshi. Trend prediction in social bookmark service using time series of bookmarks. In DEWS, volume 2, 2008.
-
(2008)
DEWS
, vol.2
-
-
Takashi, M.1
Masatoshi, Y.2
-
26
-
-
0003237798
-
Topic detection in broadcast news
-
Morgan Kaufmann Publishers, Inc
-
F. Walls, H. Jin, S. Sista, and R. Schwartz. Topic detection in broadcast news. In In Proceedings of the DARPA Broadcast News Workshop, pages 193-198. Morgan Kaufmann Publishers, Inc, 1999.
-
(1999)
Proceedings of the DARPA Broadcast News Workshop
, pp. 193-198
-
-
Walls, F.1
Jin, H.2
Sista, S.3
Schwartz, R.4
-
27
-
-
33749565782
-
Topics over time: A non-markov continuous-time model of topical trends
-
X. Wang and A. Mccallum. Topics over time: A non-markov continuous-time model of topical trends. In in SIGKDD, 2006.
-
(2006)
SIGKDD
-
-
Wang, X.1
McCallum, A.2
-
28
-
-
24044470614
-
Clustering of time series data - A survey
-
DOI 10.1016/j.patcog.2005.01.025, PII S0031320305001305
-
T. Warren Liao. Clustering of time series data-a survey. Pattern Recogn., 38(11):1857-1874, Nov. 2005. (Pubitemid 41214630)
-
(2005)
Pattern Recognition
, vol.38
, Issue.11
, pp. 1857-1874
-
-
Warren Liao, T.1
-
29
-
-
62949180321
-
Topic detection and tracking for threaded discussion communities
-
Washington, DC, USA, IEEE Computer Society
-
M. Zhu, W. Hu, and O. Wu. Topic detection and tracking for threaded discussion communities. In Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Volume 01, WI-IAT '08, pages 77-83, Washington, DC, USA, 2008. IEEE Computer Society.
-
(2008)
Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Volume 01, WI-IAT '08
, pp. 77-83
-
-
Zhu, M.1
Hu, W.2
Wu, O.3
-
30
-
-
77952383186
-
Effcient elastic burst detection in data streams
-
New York, NY, USA, ACM
-
Y. Zhu and D. Shasha. Effcient elastic burst detection in data streams. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '03, pages 336-345, New York, NY, USA, 2003. ACM.
-
(2003)
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '03
, pp. 336-345
-
-
Zhu, Y.1
Shasha, D.2
|