메뉴 건너뛰기




Volumn 57, Issue 3-4, 2013, Pages 494-502

Tau approximate solution of weakly singular Volterra integral equations

Author keywords

Abel's equations; Spectral methods; Tau method; Weakly singular integral equations

Indexed keywords

ABEL'S EQUATION; APPROXIMATE SOLUTION; ARBITRARY POLYNOMIAL; CHEBYSHEV; INTEGRAL PART; LEGENDRE; NUMERICAL EXPERIMENTS; NUMERICAL SOLUTION; POLYNOMIAL SOLUTION; SPECTRAL METHODS; TAU METHOD; VOLTERRA INTEGRAL EQUATIONS; WEAKLY SINGULAR; WEAKLY SINGULAR INTEGRAL EQUATIONS;

EID: 84870498937     PISSN: 08957177     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.mcm.2012.07.004     Document Type: Article
Times cited : (29)

References (31)
  • 1
    • 0019659830 scopus 로고
    • An operational approach to the Tau method for the numerical solution of nonlinear differential equations
    • Ortiz E.L., Samara H. An operational approach to the Tau method for the numerical solution of nonlinear differential equations. Computing 1981, 27:15-25.
    • (1981) Computing , vol.27 , pp. 15-25
    • Ortiz, E.L.1    Samara, H.2
  • 2
    • 85162699057 scopus 로고
    • Trigonometric interpolation of empirical and analytical functions
    • Lanczos C. Trigonometric interpolation of empirical and analytical functions. J. Math. Phys. 1938, 17:123-199.
    • (1938) J. Math. Phys. , vol.17 , pp. 123-199
    • Lanczos, C.1
  • 3
    • 0003167590 scopus 로고
    • Eigenvalue problems for singularly perturbed differential equations
    • Boole Press, Dublin, J.J.H. Miller (Ed.)
    • Liu K.M., Ortiz E.L. Eigenvalue problems for singularly perturbed differential equations. Proceedings of the BAIL II Conference 1982, 324-329. Boole Press, Dublin. J.J.H. Miller (Ed.).
    • (1982) Proceedings of the BAIL II Conference , pp. 324-329
    • Liu, K.M.1    Ortiz, E.L.2
  • 4
    • 79960988872 scopus 로고    scopus 로고
    • Tau approximate solution of fractional partial differential equations
    • Vanani S.Karimi, Aminataei A. Tau approximate solution of fractional partial differential equations. Comput. Math. Appl. 2011, 62:1075-1083.
    • (2011) Comput. Math. Appl. , vol.62 , pp. 1075-1083
    • Vanani, S.K.1    Aminataei, A.2
  • 5
    • 84860236410 scopus 로고    scopus 로고
    • Operational Tau approximation for the Fokker-Planck equation
    • Dehcheshmeh S.S., Vanani S.Karimi, Hafshejani J.S. Operational Tau approximation for the Fokker-Planck equation. Chin. Phys. Lett. 2012, 29(4):1-4.
    • (2012) Chin. Phys. Lett. , vol.29 , Issue.4 , pp. 1-4
    • Dehcheshmeh, S.S.1    Vanani, S.K.2    Hafshejani, J.S.3
  • 6
    • 84855337770 scopus 로고    scopus 로고
    • Operational Tau approximation for a general class of fractional integro-differential equations
    • Vanani S.Karimi, Aminataei A. Operational Tau approximation for a general class of fractional integro-differential equations. Comput. Math. Appl. 2011, 30(3):655-674.
    • (2011) Comput. Math. Appl. , vol.30 , Issue.3 , pp. 655-674
    • Vanani, S.K.1    Aminataei, A.2
  • 7
    • 79958279890 scopus 로고    scopus 로고
    • Operational Tau approximation for neutral delay differential systems
    • Hafshejani J.Sedeghi, Vanani S.Karimi, Esmaily J. Operational Tau approximation for neutral delay differential systems. J. Appl. Sci. 2011, 11(14):2585-2591.
    • (2011) J. Appl. Sci. , vol.11 , Issue.14 , pp. 2585-2591
    • Hafshejani, J.S.1    Vanani, S.K.2    Esmaily, J.3
  • 8
    • 0003006282 scopus 로고
    • Approximation of eigenvalues defined by ordinary differential equations with the Tau method
    • Springer, Berlin, B. Kagestrm, A. Ruhe (Eds.)
    • Liu K.M., Ortiz E.L. Approximation of eigenvalues defined by ordinary differential equations with the Tau method. Matrix Pencils 1983, 90-102. Springer, Berlin. B. Kagestrm, A. Ruhe (Eds.).
    • (1983) Matrix Pencils , pp. 90-102
    • Liu, K.M.1    Ortiz, E.L.2
  • 9
    • 38249034254 scopus 로고
    • Tau method approximation of differential eigenvalue problems where the spectral parameter enters nonlinearly
    • Liu K.M., Ortiz E.L. Tau method approximation of differential eigenvalue problems where the spectral parameter enters nonlinearly. J. Comput. Phys. 1987, 72:299-310.
    • (1987) J. Comput. Phys. , vol.72 , pp. 299-310
    • Liu, K.M.1    Ortiz, E.L.2
  • 10
    • 0024775023 scopus 로고
    • Numerical solution of ordinary and partial function-differential eigenvalue problems with the Tau method
    • (Wien)
    • Liu K.M., Ortiz E.L. Numerical solution of ordinary and partial function-differential eigenvalue problems with the Tau method. Computing 1989, 41:205-217. (Wien).
    • (1989) Computing , vol.41 , pp. 205-217
    • Liu, K.M.1    Ortiz, E.L.2
  • 11
    • 0020905495 scopus 로고
    • Numerical solution of differential eigenvalue problems with an operational approach to the Tau method
    • Ortiz E.L., Samara H. Numerical solution of differential eigenvalue problems with an operational approach to the Tau method. Computing 1983, 31:95-103.
    • (1983) Computing , vol.31 , pp. 95-103
    • Ortiz, E.L.1    Samara, H.2
  • 12
    • 0022784186 scopus 로고
    • Numerical solution of eigenvalue problems for partial differential equations with the Tau-lines method
    • Liu K.M., Ortiz E.L. Numerical solution of eigenvalue problems for partial differential equations with the Tau-lines method. Comput. Math. Appl. B 1986, 12(5-6):1153-1168.
    • (1986) Comput. Math. Appl. B , vol.12 , Issue.5-6 , pp. 1153-1168
    • Liu, K.M.1    Ortiz, E.L.2
  • 14
    • 4244163123 scopus 로고
    • Numerical solution of nonlinear partial differential equations with Tau method
    • Ortiz E.L., Pun K.S. Numerical solution of nonlinear partial differential equations with Tau method. J. Comput. Appl. Math. 1985, 12-13:511-516.
    • (1985) J. Comput. Appl. Math. , pp. 511-516
    • Ortiz, E.L.1    Pun, K.S.2
  • 15
    • 0022782188 scopus 로고
    • A bi-dimensional Tau-elements method for the numerical solution of nonlinear partial differential equations with an application to Burgers' equation
    • Ortiz E.L., Pun K.S. A bi-dimensional Tau-elements method for the numerical solution of nonlinear partial differential equations with an application to Burgers' equation. Comput. Math. Appl. B 1986, 12(5-6):1225-1240.
    • (1986) Comput. Math. Appl. B , vol.12 , Issue.5-6 , pp. 1225-1240
    • Ortiz, E.L.1    Pun, K.S.2
  • 16
    • 0021177673 scopus 로고
    • Numerical solution of partial differential equations with variable coefficients with an operational approach to the Tau method
    • Ortiz E.L., Samara H. Numerical solution of partial differential equations with variable coefficients with an operational approach to the Tau method. Comput. Math. Appl. 1984, 10(1):5-13.
    • (1984) Comput. Math. Appl. , vol.10 , Issue.1 , pp. 5-13
    • Ortiz, E.L.1    Samara, H.2
  • 17
    • 0031537729 scopus 로고    scopus 로고
    • Iterated solutions of linear operator equations with the Tau method
    • EL-Daou M.K., Khajah H.G. Iterated solutions of linear operator equations with the Tau method. Math. Comp. 1997, 66(217):207-213.
    • (1997) Math. Comp. , vol.66 , Issue.217 , pp. 207-213
    • EL-Daou, M.K.1    Khajah, H.G.2
  • 18
    • 0037443341 scopus 로고    scopus 로고
    • Numerical solution of a class of integro-differential equations by the Tau method with an error estimation
    • Hosseini S.M., Shahmorad S. Numerical solution of a class of integro-differential equations by the Tau method with an error estimation. Appl. Math. Comput. 2003, 136:559-570.
    • (2003) Appl. Math. Comput. , vol.136 , pp. 559-570
    • Hosseini, S.M.1    Shahmorad, S.2
  • 19
    • 0013586003 scopus 로고
    • Collocation method for weakly singular second kind Volterra integral equations with non-smooth solution
    • Teriele H.J. Collocation method for weakly singular second kind Volterra integral equations with non-smooth solution. IMA J. Numer. Anal. 1982, 2:437-449.
    • (1982) IMA J. Numer. Anal. , vol.2 , pp. 437-449
    • Teriele, H.J.1
  • 20
    • 0031210355 scopus 로고    scopus 로고
    • 1896-1996: one hundred years of Volterra integral equation of the first kind
    • Brunner H. 1896-1996: one hundred years of Volterra integral equation of the first kind. Appl. Numer. Math. 1997, 24:83-93.
    • (1997) Appl. Numer. Math. , vol.24 , pp. 83-93
    • Brunner, H.1
  • 21
    • 33746258449 scopus 로고
    • Computation of rough solution of Abel integral equation
    • Academic Press, New York, H. Engl, C. Gioetsch (Eds.)
    • Gorenflo R. Computation of rough solution of Abel integral equation. Inverse and Ill-Posed Problems 1987, 195-210. Academic Press, New York. H. Engl, C. Gioetsch (Eds.).
    • (1987) Inverse and Ill-Posed Problems , pp. 195-210
    • Gorenflo, R.1
  • 22
    • 0001859547 scopus 로고
    • Abel Integral Equations: Analysis and Applications
    • Springer, Berlin
    • Gorenflo R., Vessella S. Abel Integral Equations: Analysis and Applications. Lecture Notes in Mathematics 1991, vol. 1461. Springer, Berlin.
    • (1991) Lecture Notes in Mathematics , vol.1461
    • Gorenflo, R.1    Vessella, S.2
  • 23
    • 0000505778 scopus 로고    scopus 로고
    • Numerical solution of first-kind Volterra equations by sequential Tikhonov regularization
    • Lamm P.K., Eldén L. Numerical solution of first-kind Volterra equations by sequential Tikhonov regularization. SIAM J. Numer. Anal. 1997, 34(4):1432-1450.
    • (1997) SIAM J. Numer. Anal. , vol.34 , Issue.4 , pp. 1432-1450
    • Lamm, P.K.1    Eldén, L.2
  • 26
    • 0042869934 scopus 로고
    • A variation of Nystrom's method for Hammerstein equations
    • Lardy L.J. A variation of Nystrom's method for Hammerstein equations. J. Integral Equations 1981, 3:43-60.
    • (1981) J. Integral Equations , vol.3 , pp. 43-60
    • Lardy, L.J.1
  • 27
    • 84966253976 scopus 로고
    • A new collocation-type method for Hammerstein integral equations
    • Kumar S., Sloan I.H. A new collocation-type method for Hammerstein integral equations. J. Math. Comput. 1987, 48:123-129.
    • (1987) J. Math. Comput. , vol.48 , pp. 123-129
    • Kumar, S.1    Sloan, I.H.2
  • 28
    • 38249014608 scopus 로고
    • Implicitly linear collocation method for nonlinear Volterra equations
    • Brunner H. Implicitly linear collocation method for nonlinear Volterra equations. Appl. Numer. Math. 1992, 9:235-247.
    • (1992) Appl. Numer. Math. , vol.9 , pp. 235-247
    • Brunner, H.1
  • 29
    • 38248999258 scopus 로고
    • Asymptotic error expansion variation of a collocation method for Volterra Hammerstein equations
    • Guoqiang H. Asymptotic error expansion variation of a collocation method for Volterra Hammerstein equations. Appl. Numer. Math. 1993, 13:357-369.
    • (1993) Appl. Numer. Math. , vol.13 , pp. 357-369
    • Guoqiang, H.1
  • 30
    • 1142305190 scopus 로고    scopus 로고
    • A new approach to the numerical solution of weakly singular Volterra integral equations
    • Baratella P., Orsi A.P. A new approach to the numerical solution of weakly singular Volterra integral equations. J. Comput. Appl. Math. 2004, 163:401-418.
    • (2004) J. Comput. Appl. Math. , vol.163 , pp. 401-418
    • Baratella, P.1    Orsi, A.P.2
  • 31
    • 0033226060 scopus 로고    scopus 로고
    • The automatic solution to systems of ordinary differential equations by the Tau method
    • Liu K.M., Pan C.K. The automatic solution to systems of ordinary differential equations by the Tau method. Comput. Math. Appl. 1999, 38:197-210.
    • (1999) Comput. Math. Appl. , vol.38 , pp. 197-210
    • Liu, K.M.1    Pan, C.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.