메뉴 건너뛰기




Volumn 48, Issue 12, 2012, Pages 4747-4756

Finite-element neural network-based solving 3-D differential equations in mfl

Author keywords

Conjugate gradient (CG) algorithm; finite element method (FEM); finite element neural network (FENN); forward model; inverse problem; magnetic flux leakage (MFL) testing

Indexed keywords

3-D MAGNETIC FIELD ANALYSIS; COMPUTATIONAL COSTS; CONJUGATE GRADIENT; CONJUGATE GRADIENT ALGORITHMS; FINITE ELEMENT METHOD FEM; FINITE-ELEMENT; FORWARD MODELS; GRADIENT DESCENT; ITERATIVE APPROACH; MAGNETIC FLUX LEAKAGE; MAGNETIC-FIELD INTENSITY; NETWORK-BASED; NEURAL NETWORK STRUCTURES; RADIAL WAVELETS; VECTOR PLOT; VERTICAL COMPONENT;

EID: 84870473995     PISSN: 00189464     EISSN: None     Source Type: Journal    
DOI: 10.1109/TMAG.2012.2207732     Document Type: Article
Times cited : (49)

References (22)
  • 1
    • 21144457658 scopus 로고    scopus 로고
    • Experimental verification of a finite element model used in a magnetic flux leakage inverse problem
    • R. Schifini and A. C. Bruno, "Experimental verification of a finite element model used in a magnetic flux leakage inverse problem," J. Phys. D: Appl. Phys., vol. 38, pp. 2427-2431, 2005.
    • (2005) J. Phys. D: Appl. Phys , vol.38 , pp. 2427-2431
    • Schifini, R.1    Bruno, A.C.2
  • 2
    • 0242305205 scopus 로고    scopus 로고
    • A model for magnetic flux leakage signals predication
    • C. Mandache and L. Clapham, "A model for magnetic flux leakage signals predication," J. Phys. D: Appl. Phys., vol. 36, pp. 2427-2431, 2003.
    • (2003) J. Phys. D: Appl. Phys , vol.36 , pp. 2427-2431
    • Mandache, C.1    Clapham, L.2
  • 3
    • 70449412653 scopus 로고    scopus 로고
    • Dipole modeling of magnetic flux leakage
    • Apr
    • S. Dutta, F. Ghorbel, and R. Stanley, "Dipole modeling of magnetic flux leakage," IEEE Trans. Magn., vol. 45, no. 4, pp. 1959-1965, Apr. 2009.
    • (2009) IEEE Trans. Magn , vol.45 , Issue.4 , pp. 1959-1965
    • Dutta, S.1    Ghorbel, F.2    Stanley, R.3
  • 4
    • 77954243907 scopus 로고    scopus 로고
    • Simulation and analysis of 3-D magnetic flux leakage
    • Apr
    • S. Dutta, F. Ghorbel, and R. Stanley, "Simulation and analysis of 3-D magnetic flux leakage," IEEE Trans. Magn., vol. 45, no. 4, pp. 1966-1972, Apr. 2009.
    • (2009) IEEE Trans. Magn , vol.45 , Issue.4 , pp. 1966-1972
    • Dutta, S.1    Ghorbel, F.2    Stanley, R.3
  • 5
    • 64349108976 scopus 로고    scopus 로고
    • Application of 3-D FEM in the simulation analysis forMFL signals
    • F. Ji, C.Wang, S. Sun, andW.Wang, "Application of 3-D FEM in the simulation analysis forMFL signals," Insight, vol. 51, no. 1, pp. 32-35, 2009.
    • (2009) Insight , vol.51 , Issue.1 , pp. 32-35
    • Ji, F.1    Wang, C.2    Sun, S.3    Wang, W.4
  • 6
    • 33646237796 scopus 로고    scopus 로고
    • Finite element modeling of a circumferential magnetizer
    • R. C. Ireland and C. R. Torres, "Finite element modeling of a circumferential magnetizer," Sensors Actuators, vol. 129, pp. 197-202, 2006.
    • (2006) Sensors Actuators , vol.129 , pp. 197-202
    • Ireland, R.C.1    Torres, C.R.2
  • 7
    • 18444369328 scopus 로고    scopus 로고
    • Local area magnetization and inspection method for aerial pipelines
    • DOI 10.1016/j.ndteint.2004.12.008, PII S0963869505000162
    • S. Cheng, X.Wu, and Y. Kang, "Local area magnetization and inspection method for aerial pipelines," NDT&E Int., vol. 38, pp. 448-452, 2005. (Pubitemid 40643084)
    • (2005) NDT and E International , vol.38 , Issue.6 , pp. 448-452
    • Cheng, S.1    Wu, X.2    Kang, Y.3
  • 8
    • 33646064421 scopus 로고    scopus 로고
    • Numerical simulation onmagnetic flux leakage evaluation at high speed
    • Y. Li, G. Y. Tian, and S.Ward, "Numerical simulation onmagnetic flux leakage evaluation at high speed," NDT&E Int., vol. 39, pp. 367-373, 2006.
    • (2006) NDT&E Int , vol.39 , pp. 367-373
    • Li, Y.1    Tian, G.Y.2    Ward, S.3
  • 9
    • 0036493683 scopus 로고    scopus 로고
    • Reconstruction of crack shapes from the MFLT signals by using a rapid forward solver and an optimization approach
    • DOI 10.1109/20.996263, PII S0018946402027814
    • Z. Chen, G. Preda, O. Mihalache, and K. Miya, "Reconstruction of crack shapes from the MFLT signals by using a rapid forward solver and an optimization approach," IEEE Trans. Magn., vol. 38, no. 2, pp. 1025-1028, Mar. 2002. (Pubitemid 34531337)
    • (2002) IEEE Transactions on Magnetics , vol.38 , Issue.2 , pp. 1025-1028
    • Chen, Z.1    Preda, G.2    Mihalache, O.3    Miya, K.4
  • 10
    • 84859030443 scopus 로고    scopus 로고
    • Reconstruction of 3D defect profiles from the MFLT signals by using radial wavelet basis function neural network iterative model
    • Mar.
    • C. Xu, C. Wang, X. Zuo, X. Yuan, and F. Ji, "Reconstruction of 3D defect profiles from the MFLT signals by using radial wavelet basis function neural network iterative model," Insight, vol. 54, no. 3, pp. 138-143, Mar. 2012.
    • (2012) Insight , vol.54 , Issue.3 , pp. 138-143
    • Xu, C.1    Wang, C.2    Zuo, X.3    Yuan, X.4    Ji, F.5
  • 11
    • 85008050170 scopus 로고    scopus 로고
    • Adaptive wavelets for characterizing magnetic flux leakage signals from pipeline inspection
    • Oct
    • A. Joshi, L.Udpa, S. S. Udpa, and A. Tamburrino, "Adaptive wavelets for characterizing magnetic flux leakage signals from pipeline inspection," IEEE Trans. Magn., vol. 42, no. 10, pp. 3168-3170, Oct. 2006.
    • (2006) IEEE Trans. Magn , vol.42 , Issue.10 , pp. 3168-3170
    • Joshi, A.1    Udpa, L.2    Udpa, S.S.3    Tamburrino, A.4
  • 12
    • 0028333556 scopus 로고
    • Neural network representation of the finite element method
    • J. Takeuchi and Y. Kosugi, "Neural network representation of the finite element method," Neural Networks, vol. 7, no. 2, pp. 389-395, 1994.
    • (1994) Neural Networks , vol.7 , Issue.2 , pp. 389-395
    • Takeuchi, J.1    Kosugi, Y.2
  • 13
    • 0038521005 scopus 로고    scopus 로고
    • A multilayer perceptron neural model for the differentiation of laplacian 3-D finite-element solutions
    • Mar
    • G. Capizzi, S. Coco, and A. Laudani, "A multilayer perceptron neural model for the differentiation of laplacian 3-D finite-element solutions," IEEE Trans. Magn., vol. 39, no. 3, pp. 1277-1280, Mar. 2003.
    • (2003) IEEE Trans. Magn , vol.39 , Issue.3 , pp. 1277-1280
    • Capizzi, G.1    Coco, S.2    Laudani, A.3
  • 14
    • 2342620867 scopus 로고    scopus 로고
    • A neural network approach for the differentiation of numerical solutions of 3-D electromagnetic problems
    • Feb
    • G. Capizzi, S. Coco, C. Giuffrida, and A. Laudani, "A neural network approach for the differentiation of numerical solutions of 3-D electromagnetic problems," IEEE Trans. Magn., vol. 40, no. 2, pp. 953-956, Feb. 2004.
    • (2004) IEEE Trans. Magn , vol.40 , Issue.2 , pp. 953-956
    • Capizzi, G.1    Coco, S.2    Giuffrida, C.3    Laudani, A.4
  • 15
    • 0029307935 scopus 로고
    • Direct solution method for finite element analysis using hopfield neural network
    • Jun
    • H. Yamashita, N. Kowata, V. Cingoski, and K. Kaneda, "Direct solution method for finite element analysis using hopfield neural network," IEEE Trans. Magn., vol. 31, no. 3, pp. 1964-1967, Jun. 1995.
    • (1995) IEEE Trans. Magn , vol.31 , Issue.3 , pp. 1964-1967
    • Yamashita, H.1    Kowata, N.2    Cingoski, V.3    Kaneda, K.4
  • 16
    • 28244493592 scopus 로고    scopus 로고
    • Finite-element neural networks for solving differential equations
    • DOI 10.1109/TNN.2005.857945
    • P. Ramuhalli, L. Udpa, and S. S. Udpa, "Finite-element neural networks for solving differential equations," IEEE Trans. Neural Netw., vol. 16, no. 6, pp. 1381-1392, Dec. 2005. (Pubitemid 41709638)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.6 , pp. 1381-1392
    • Ramuhalli, P.1    Udpa, L.2    Udpa, S.S.3
  • 17
    • 77949777693 scopus 로고    scopus 로고
    • Sizing of 3-D arbitrary defects using magnetic flux leakage measurements
    • Apr.
    • R.Maryam, R. K. Amineh, S. Koziel, N. K. Nikolova, and J. P. Reilly, "Sizing of 3-D arbitrary defects using magnetic flux leakage measurements," IEEE Trans. Magn., vol. 46, no. 4, pp. 1024-1033, Apr. 2010.
    • (2010) IEEE Trans. Magn , vol.46 , Issue.4 , pp. 1024-1033
    • Maryam, R.1    Amineh, R.K.2    Koziel, S.3    Nikolova, N.K.4    Reilly, J.P.5
  • 18
    • 77954847042 scopus 로고    scopus 로고
    • The application of topological gradients to defect identification in magnetic flux leakage-type NDT
    • Aug.
    • M. Li and D. A. Lowther, "The application of topological gradients to defect identification in magnetic flux leakage-type NDT," IEEE Trans. Magn., vol. 46, no. 8, pp. 3221-3224, Aug. 2010.
    • (2010) IEEE Trans. Magn , vol.46 , Issue.8 , pp. 3221-3224
    • Li, M.1    Lowther, D.A.2
  • 19
    • 0036874298 scopus 로고    scopus 로고
    • Electromagnetic NDE signal inversion by function-approximation neural networks
    • Nov
    • P. Ramuhalli, L. Udpa, and S. S. Udpa, "Electromagnetic NDE signal inversion by function-approximation neural networks," IEEE Trans. Magn., vol. 38, no. 6, pp. 3633-3642, Nov. 2002.
    • (2002) IEEE Trans. Magn , vol.38 , Issue.6 , pp. 3633-3642
    • Ramuhalli, P.1    Udpa, L.2    Udpa, S.S.3
  • 20
    • 0037641215 scopus 로고    scopus 로고
    • Neural network-based inversion algorithms in magnetic flux leakage nondestructive evaluation
    • P. Ramuhalli, L. Udpa, and S. S. Udpa, "Neural network-based inversion algorithms in magnetic flux leakage nondestructive evaluation," J. Appl. Phys., vol. 93, no. 10, pp. 8274-8276, 2003.
    • (2003) J. Appl. Phys , vol.93 , Issue.10 , pp. 8274-8276
    • Ramuhalli, P.1    Udpa, L.2    Udpa, S.S.3
  • 21
    • 0034540049 scopus 로고    scopus 로고
    • Characterization of gas pipeline inspection signals using wavelet basis function neural networks
    • DOI 10.1016/S0963-8695(00)00008-6
    • K. Hwang, S. Mandayam, S. S. Udpa, L. Udpa, W. Lord, andM. Atzal, "Characterization of gas pipeline inspection signals using wavelet basis function neural networks," NDT&E Int., vol. 33, pp. 531-545, 2000. (Pubitemid 32018771)
    • (2000) NDT and E International , vol.33 , Issue.8 , pp. 531-545
    • Hwang, K.1    Mandayam, S.2    Udpa, S.S.3    Udpa, L.4    Lord, W.5    Atzal, M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.