메뉴 건너뛰기




Volumn 86, Issue 10, 2008, Pages 1401-1406

Prediction of Graft Survival of Living-Donor Kidney Transplantation: Nomograms or Artificial Neural Networks?

Author keywords

Artificial neural networks; Kidney transplantation; Nomogram; Predicting graft survival; Prognostic models

Indexed keywords

ACCURACY; ADULT; ARTICLE; ARTIFICIAL NEURAL NETWORK; CONTROLLED STUDY; GRAFT SURVIVAL; HUMAN; INTERMETHOD COMPARISON; KIDNEY TRANSPLANTATION; LIVING DONOR; MAJOR CLINICAL STUDY; NOMOGRAM; PREDICTION; PRIORITY JOURNAL; PROGNOSIS; SENSITIVITY AND SPECIFICITY; UNIVARIATE ANALYSIS; AGE; ALGORITHM; FAMILY; HISTOCOMPATIBILITY TEST; NERVE CELL NETWORK; PATIENT SELECTION; PHYSIOLOGY; PREDICTION AND FORECASTING; REPRODUCIBILITY; RETROSPECTIVE STUDY; STATISTICAL MODEL;

EID: 58149358848     PISSN: 00411337     EISSN: None     Source Type: Journal    
DOI: 10.1097/TP.0b013e31818b221f     Document Type: Article
Times cited : (45)

References (17)
  • 1
    • 33644860186 scopus 로고    scopus 로고
    • Utility of a mathematical nomogram to predict delayed graft function: A single-center experience
    • Grossberg JA, Reinert SE, Monaco AP, et al. Utility of a mathematical nomogram to predict delayed graft function: A single-center experience. Transplantation 2006; 81: 155.
    • (2006) Transplantation , vol.81 , pp. 155
    • Grossberg, J.A.1    Reinert, S.E.2    Monaco, A.P.3
  • 2
    • 0037083655 scopus 로고    scopus 로고
    • Novel artificial neural network for early detection of prostate cancer
    • Djavan B, Remzi M, Zlotta A, et al. Novel artificial neural network for early detection of prostate cancer. J Clin Oncol 2002; 20: 921.
    • (2002) J Clin Oncol , vol.20 , pp. 921
    • Djavan, B.1    Remzi, M.2    Zlotta, A.3
  • 3
    • 0242608650 scopus 로고    scopus 로고
    • Comparison of Cox regression with other methods for determining prediction models and nomograms
    • Kattan MW. Comparison of Cox regression with other methods for determining prediction models and nomograms. J Urol 2003; 170: S6.
    • (2003) J Urol , vol.170
    • Kattan, M.W.1
  • 4
    • 20444477600 scopus 로고    scopus 로고
    • When and how to use informatics tools in caring for urologic patients
    • Kattan MW. When and how to use informatics tools in caring for urologic patients. Nat Clin Pract Urol 2005; 2: 183.
    • (2005) Nat Clin Pract Urol , vol.2 , pp. 183
    • Kattan, M.W.1
  • 5
    • 46049109581 scopus 로고    scopus 로고
    • Nomogram that predicts graft survival probability following living-donor kidney transplant
    • Akl A, Mostafa A, Ghoneim MA. Nomogram that predicts graft survival probability following living-donor kidney transplant. Exp Clin Transplant 2008; 6: 30.
    • (2008) Exp Clin Transplant , vol.6 , pp. 30
    • Akl, A.1    Mostafa, A.2    Ghoneim, M.A.3
  • 6
    • 0033828554 scopus 로고    scopus 로고
    • Comparison of artificial neural networks with logistic regression in prediction of in-hospital death after percutaneous transluminal coronary angioplasty
    • Freeman RV, Eagle KA, Bates ER, et al. Comparison of artificial neural networks with logistic regression in prediction of in-hospital death after percutaneous transluminal coronary angioplasty. Am Heart J 2002; 140: 511.
    • (2002) Am Heart J , vol.140 , pp. 511
    • Freeman, R.V.1    Eagle, K.A.2    Bates, E.R.3
  • 7
    • 0000249566 scopus 로고    scopus 로고
    • An algorithm for cadaver kidney allocation based on a multivariate analysis of factors impacting on cadaver kidney graft survival and function
    • Poli F, Scalamogna M, Cardillo M, et al. An algorithm for cadaver kidney allocation based on a multivariate analysis of factors impacting on cadaver kidney graft survival and function. Transpl Int 2000; 13(suppl 1): S259.
    • (2000) Transpl Int , vol.13 , Issue.SUPPL. 1
    • Poli, F.1    Scalamogna, M.2    Cardillo, M.3
  • 8
    • 9944235887 scopus 로고    scopus 로고
    • Predicting creatinine clearance by a simple formula following live- donor kidney transplantation
    • Zapletal C, Lorenz MW, Woeste G, et al. Predicting creatinine clearance by a simple formula following live- donor kidney transplantation. Transpl Int 2004; 17: 490.
    • (2004) Transpl Int , vol.17 , pp. 490
    • Zapletal, C.1    Lorenz, M.W.2    Woeste, G.3
  • 9
    • 0344898384 scopus 로고    scopus 로고
    • Prediction of 3-year cadaveric graft survival based on pre-transplant variables in a large national dataset
    • Goldfarb-Rumyantzev AS, Scandling JD, Pappas L, et al. Prediction of 3-year cadaveric graft survival based on pre-transplant variables in a large national dataset. Clin Transplant 2003;17: 485.
    • (2003) Clin Transplant , vol.17 , pp. 485
    • Goldfarb-Rumyantzev, A.S.1    Scandling, J.D.2    Pappas, L.3
  • 10
    • 34648852342 scopus 로고    scopus 로고
    • Predicting kidney transplant survival using tree-based modeling
    • Krikov S, Khan A, Baird BC, et al. Predicting kidney transplant survival using tree-based modeling. ASAIO J 2007; 53: 592.
    • (2007) ASAIO J , vol.53 , pp. 592
    • Krikov, S.1    Khan, A.2    Baird, B.C.3
  • 11
    • 0345328194 scopus 로고    scopus 로고
    • Prediction of delayed renal allograft function using an artificial neural network
    • Brier ME, Ray PC, Klein JB. Prediction of delayed renal allograft function using an artificial neural network. Nephrol Dial Transplant 2003; 18: 2655.
    • (2003) Nephrol Dial Transplant , vol.18 , pp. 2655
    • Brier, M.E.1    Ray, P.C.2    Klein, J.B.3
  • 12
    • 20444477600 scopus 로고    scopus 로고
    • When and how to use informatics tools in caring for urologic patients
    • Kattan MW. When and how to use informatics tools in caring for urologic patients. Nat Clin Pract Urol 2005; 2: 183.
    • (2005) Nat Clin Pract Urol , vol.2 , pp. 183
    • Kattan, M.W.1
  • 13
    • 0031016543 scopus 로고    scopus 로고
    • Evaluation of a nomogram usedto predict the pathologic stage of clinically localized prostate carcinoma
    • Kattan MW, Stapleton AMF, Wheeler TM, et al. Evaluation of a nomogram usedto predict the pathologic stage of clinically localized prostate carcinoma. Cancer 1997; 79: 528.
    • (1997) Cancer , vol.79 , pp. 528
    • Kattan, M.W.1    Stapleton, A.M.F.2    Wheeler, T.M.3
  • 14
    • 0037083428 scopus 로고    scopus 로고
    • Validation study of the accuracy of a postoperative nomogram for recurrence after radical prostatectomy for localized prostate cancer
    • Graefen BM, Karakiewicz PI, Cagiannos I, et al. Validation study of the accuracy of a postoperative nomogram for recurrence after radical prostatectomy for localized prostate cancer. J Clin Oncol 2002; 20: 951.
    • (2002) J Clin Oncol , vol.20 , pp. 951
    • Graefen, B.M.1    Karakiewicz, P.I.2    Cagiannos, I.3
  • 15
    • 7644224728 scopus 로고    scopus 로고
    • Validation of the postoperative nomogram for 12-year sarcoma-specific mortality
    • Eilber FC, Brennan MF, Eilber FR, et al. Validation of the postoperative nomogram for 12-year sarcoma-specific mortality. Cancer 2004; 101: 2270.
    • (2004) Cancer , vol.101 , pp. 2270
    • Eilber, F.C.1    Brennan, M.F.2    Eilber, F.R.3
  • 16
    • 13444310428 scopus 로고    scopus 로고
    • Validation of a nomogram for predicting disease specific survival after an R0 resection for gastric carcinoma
    • Peeters KC, Kattan MW, Hartgrink HH, et al. Validation of a nomogram for predicting disease specific survival after an R0 resection for gastric carcinoma. Cancer 2005; 103: 702.
    • (2005) Cancer , vol.103 , pp. 702
    • Peeters, K.C.1    Kattan, M.W.2    Hartgrink, H.H.3
  • 17
    • 1442350707 scopus 로고    scopus 로고
    • Non-linear survival analysis using neural networks
    • Ripley RM, Harris AL, Tarassenko L.Non-linear survival analysis using neural networks. Stat Med 2004; 23: 825.
    • (2004) Stat Med , vol.23 , pp. 825
    • Ripley, R.M.1    Harris, A.L.2    Tarassenko, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.