-
2
-
-
33748854828
-
Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload
-
DOI 10.1088/0964-1726/15/5/030, PII S0964172606304946, 030
-
Leland E S and Wright P K 2006 Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload Smart Mater. Struct. 15 1413-20 (Pubitemid 44418854)
-
(2006)
Smart Materials and Structures
, vol.15
, Issue.5
, pp. 1413-1420
-
-
Leland, E.S.1
Wright, P.K.2
-
3
-
-
33644584302
-
Design of mechanical band-pass filters for energy scavenging
-
10.1016/j.jsv.2005.08.018 0022-460X
-
Shahruz S 2006 Design of mechanical band-pass filters for energy scavenging J. Sound Vib. 292 987-98
-
(2006)
J. Sound Vib.
, vol.292
, Issue.3-5
, pp. 987-998
-
-
Shahruz, S.1
-
4
-
-
41849138249
-
A vibration energy harvesting device with bidirectional resonance frequency tunability
-
0964-1726 015035
-
Challa V R, Prasad M G, Shi Y and Fisher F T 2008 A vibration energy harvesting device with bidirectional resonance frequency tunability Smart Mater. Struct. 17 015035
-
(2008)
Smart Mater. Struct.
, vol.17
, Issue.1
-
-
Challa, V.R.1
Prasad, M.G.2
Shi, Y.3
Fisher, F.T.4
-
5
-
-
20144389632
-
Improving power output for vibration-based energy scavengers
-
DOI 10.1109/MPRV.2005.14
-
Roundy S et al 2005 Improving power output for vibration-based energy scavengers IEEE Pervasive Comput. 4 28-36 (Pubitemid 40495603)
-
(2005)
IEEE Pervasive Computing
, vol.4
, Issue.1
, pp. 28-36
-
-
Roundy, S.1
Leland, E.S.2
Baker, J.3
Carleton, E.4
Reilly, E.5
Lai, E.6
Otis, B.7
Rabaey, J.M.8
Wright, P.K.9
Sundararajan, V.10
-
6
-
-
27944454427
-
Comparative modelling for vibration scavengers
-
W1L-F.3, Proceedings of the IEEE Sensors 2004
-
Sterken T, Baert K, Van Hoof C, Puers R, Borghs G and Fiorini P 2004 Comparative modeling for vibration scavengers [MEMS] energy scavengers Proc. IEEE Sensors pp 1249-52 (Pubitemid 41668184)
-
(2004)
Proceedings of IEEE Sensors
, vol.3
, pp. 1249-1252
-
-
Sterken, T.1
Baert, K.2
Van Hoof, C.3
Puers, R.4
Borghs, G.5
Fiorini, P.6
-
7
-
-
27144528640
-
On the effectiveness of vibration-based energy harvesting
-
DOI 10.1177/1045389X05054042
-
Roundy S 2005 On the effectiveness of vibration-based energy harvesting J. Intell. Mater. Syst. Struct. 16 809-23 (Pubitemid 41498482)
-
(2005)
Journal of Intelligent Material Systems and Structures
, vol.16
, Issue.10
, pp. 809-823
-
-
Roundy, S.1
-
8
-
-
42549138834
-
The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting
-
0960-1317
-
Shen D, Park J H, Ajitsaria J, Choe S Y, Wikle H C and Kim D J 2008 The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting J. Micromech. Microeng. 18 055017
-
(2008)
J. Micromech. Microeng.
, vol.18
, Issue.5
, pp. 055017
-
-
Shen, D.1
Park, J.H.2
Ajitsaria, J.3
Choe, S.Y.4
Wikle, H.C.5
Kim, D.J.6
-
9
-
-
80053506652
-
Simulation of a Duffing oscillator for broadband piezoelectric energy harvesting
-
0964-1726
-
Sebald G, Kuwano H, Guyomar D and Ducharne B 2011 Simulation of a Duffing oscillator for broadband piezoelectric energy harvesting Smart Mater. Struct. 20 075022
-
(2011)
Smart Mater. Struct.
, vol.20
, Issue.7
, pp. 075022
-
-
Sebald, G.1
Kuwano, H.2
Guyomar, D.3
Ducharne, B.4
-
10
-
-
80052415243
-
Ultra-wide bandwidth piezoelectric energy harvesting
-
10.1063/1.3629551 0003-6951
-
Hajati A and Kim S G 2011 Ultra-wide bandwidth piezoelectric energy harvesting Appl. Phys. Lett. 99 083105
-
(2011)
Appl. Phys. Lett.
, vol.99
, Issue.8
, pp. 083105
-
-
Hajati, A.1
Kim, S.G.2
-
12
-
-
84863230318
-
Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers
-
0964-1726
-
Liu H, Lee C, Kobayashi T, Tay C J and Quan C 2012 Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers Smart Mater. Struct. 21 035005
-
(2012)
Smart Mater. Struct.
, vol.21
, Issue.3
, pp. 035005
-
-
Liu, H.1
Lee, C.2
Kobayashi, T.3
Tay, C.J.4
Quan, C.5
-
13
-
-
80053573320
-
Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power
-
10.1109/JMEMS.2011.2162488 1057-7157
-
Liu H, Tay C J, Quan C, Kobayashi T and Lee C 2011 Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power J. Microelectromech. Syst. 20 1131-42
-
(2011)
J. Microelectromech. Syst.
, vol.20
, Issue.5
, pp. 1131-1142
-
-
Liu, H.1
Tay, C.J.2
Quan, C.3
Kobayashi, T.4
Lee, C.5
-
16
-
-
34249296681
-
A review of power harvesting using piezoelectric materials (2003-2006)
-
DOI 10.1088/0964-1726/16/3/R01, PII S0964172607325810, R01
-
Anton S R and Sodano H A 2007 A review of power harvesting using piezoelectric materials (2003-2006) Smart Mater. Struct. 16 R1-R21 (Pubitemid 46804867)
-
(2007)
Smart Materials and Structures
, vol.16
, Issue.3
-
-
Anton, S.R.1
Sodano, H.A.2
-
17
-
-
70350659904
-
A frequency adjustable vibration energy harvester
-
Wu X, Lin J, Kato S, Zhang K, Ren T and Liu L 2008 A frequency adjustable vibration energy harvester Proc. PowerMEMS
-
(2008)
Proc. PowerMEMS
-
-
Wu, X.1
Lin, J.2
Kato, S.3
Zhang, K.4
Ren, T.5
Liu, L.6
-
19
-
-
77956211262
-
Passive self-tuning energy harvester for extracting energy from rotational motion
-
10.1063/1.3481689 0003-6951
-
Gu L and Livermore C 2010 Passive self-tuning energy harvester for extracting energy from rotational motion Appl. Phys. Lett. 97 081904
-
(2010)
Appl. Phys. Lett.
, vol.97
, Issue.8
, pp. 081904
-
-
Gu, L.1
Livermore, C.2
-
20
-
-
84555197183
-
Compact self-tuning passively energy harvesting for rotating applications
-
0964-1726
-
Gu L and Livermore C 2012 Compact self-tuning passively energy harvesting for rotating applications Smart Mater. Struct. 21 015002
-
(2012)
Smart Mater. Struct.
, vol.21
, Issue.1
, pp. 015002
-
-
Gu, L.1
Livermore, C.2
-
21
-
-
0031246730
-
Can a coupling coefficient of a piezoelectric device be higher than those of its active material?
-
Lesieutre G A and Davis C L 1997 Can a coupling coefficient of a piezoelectric device be higher than those of its active material? J. Intell. Mater. Syst. Struct. 8 859-67 (Pubitemid 127607025)
-
(1997)
Journal of Intelligent Material Systems and Structures
, vol.8
, Issue.10
, pp. 859-867
-
-
Lesieutre, G.A.1
Davis, C.L.2
-
22
-
-
39749086306
-
A piezoelectric power harvester with adjustable frequency through axial preloads
-
DOI 10.1088/0964-1726/16/5/054, PII S0964172607468318
-
Hu Y, Xue H and Hu H 2007 A piezoelectric power harvester with adjustable frequency through axial preloads Smart Mater. Struct. 16 1961-6 (Pubitemid 351291562)
-
(2007)
Smart Materials and Structures
, vol.16
, Issue.5
, pp. 1961-1966
-
-
Hu, Y.1
Xue, H.2
Hu, H.3
-
23
-
-
70350645341
-
Bidirectional frequency tuning of a piezoelectric energy converter based on a cantilever beam
-
0960-1317
-
Eichhorn C, Goldschmidtboeing F and Woias P 2009 Bidirectional frequency tuning of a piezoelectric energy converter based on a cantilever beam J. Micromech. Microeng. 19 094006
-
(2009)
J. Micromech. Microeng.
, vol.19
, Issue.9
, pp. 094006
-
-
Eichhorn, C.1
Goldschmidtboeing, F.2
Woias, P.3
-
24
-
-
84858447240
-
Parametric study of zigzag microstructure for vibrational energy harvesting
-
10.1109/JMEMS.2011.2171321 1057-7157
-
Karami M A and Inman D J 2012 Parametric study of zigzag microstructure for vibrational energy harvesting IEEE J. Microelectromech. Syst. 21 145-60
-
(2012)
IEEE J. Microelectromech. Syst.
, vol.21
, Issue.1
, pp. 145-160
-
-
Karami, M.A.1
Inman, D.J.2
-
29
-
-
85083959156
-
An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations
-
0964-1726 025009
-
Erturk A and Inman D J 2009 An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations Smart Mater. Struct. 18 025009
-
(2009)
Smart Mater. Struct.
, vol.18
, Issue.2
-
-
Erturk, A.1
Inman, D.J.2
-
32
-
-
44349192514
-
A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters
-
10.1115/1.2890402 0739-3717
-
Erturk A and Inman D J 2008 A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters J. Vib. Acoust. 130 041002
-
(2008)
J. Vib. Acoust.
, vol.130
, Issue.4
, pp. 041002
-
-
Erturk, A.1
Inman, D.J.2
-
33
-
-
77952994643
-
Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams
-
10.1115/1.2981094 0739-3717
-
Erturk A, Tarazaga P A, Farmer J R and Inman D J 2009 Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams J. Vib. Acoust. 131 011010
-
(2009)
J. Vib. Acoust.
, vol.131
, Issue.1
, pp. 011010
-
-
Erturk, A.1
Tarazaga, P.A.2
Farmer, J.R.3
Inman, D.J.4
-
34
-
-
33644749219
-
Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters
-
DOI 10.1080/10584580590964574, Proceedigns of Symposium on Ferroelectricity and Piezoelectricity, IMRC 2004
-
Dutoit N E, Brian L W and Sang-Gook K 2005 Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters Integr. Ferroelectr. 71 121-60 (Pubitemid 43338658)
-
(2005)
Integrated Ferroelectrics
, vol.71
, pp. 121-160
-
-
DuToit, N.E.1
Wardle, B.L.2
Kim, S.-G.3
|