-
5
-
-
0032307661
-
Approximate analytical solution for seepage flow with fractional derivatives in porous media
-
He J.H. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Engrg. 1998, 167:57-68.
-
(1998)
Comput. Methods Appl. Mech. Engrg.
, vol.167
, pp. 57-68
-
-
He, J.H.1
-
6
-
-
38049021511
-
On the solution of the fractional nonlinear Schrödinger equation
-
Rida S.Z., El-Sherbiny H.M., Arafa A.A.M. On the solution of the fractional nonlinear Schrödinger equation. Phys. Lett. A 2008, 372:553-558.
-
(2008)
Phys. Lett. A
, vol.372
, pp. 553-558
-
-
Rida, S.Z.1
El-Sherbiny, H.M.2
Arafa, A.A.M.3
-
7
-
-
34548384362
-
Numerical methods for nonlinear partial differential equations of fractional order
-
Odibat Z.M., Momani S. Numerical methods for nonlinear partial differential equations of fractional order. Appl. Math. Model. 2008, 32:28-39.
-
(2008)
Appl. Math. Model.
, vol.32
, pp. 28-39
-
-
Odibat, Z.M.1
Momani, S.2
-
8
-
-
0037174280
-
Analytical approximate solutions for nonlinear fractional differential equations
-
Shawagfeh N.T. Analytical approximate solutions for nonlinear fractional differential equations. Appl. Math. Comput. 2002, 131:517-529.
-
(2002)
Appl. Math. Comput.
, vol.131
, pp. 517-529
-
-
Shawagfeh, N.T.1
-
9
-
-
34547661760
-
Numerical solutions of fractional Boussinesq equation
-
Wang Q. Numerical solutions of fractional Boussinesq equation. Commun. Theor. Phys. (Beijing, China) 2007, 47:413-420.
-
(2007)
Commun. Theor. Phys. (Beijing, China)
, vol.47
, pp. 413-420
-
-
Wang, Q.1
-
10
-
-
65449123574
-
Solving the fractional BBM-Burgers equation using the homotopy analysis method
-
Song L.N., Zhang H.Q. Solving the fractional BBM-Burgers equation using the homotopy analysis method. Chaos Soliton Fractals 2009, 40:1616-1622.
-
(2009)
Chaos Soliton Fractals
, vol.40
, pp. 1616-1622
-
-
Song, L.N.1
Zhang, H.Q.2
-
11
-
-
43049157795
-
Numerical solutions of coupled Burgers equations with time- and space-fractional derivatives
-
Chen Y., An H.L. Numerical solutions of coupled Burgers equations with time- and space-fractional derivatives. Appl. Math. Comput. 2008, 200:87-95.
-
(2008)
Appl. Math. Comput.
, vol.200
, pp. 87-95
-
-
Chen, Y.1
An, H.L.2
-
12
-
-
0041185368
-
A review of the decomposition method in applied mathematics
-
Adomian G. A review of the decomposition method in applied mathematics. J. Math. Anal. Appl. 1988, 135:501-544.
-
(1988)
J. Math. Anal. Appl.
, vol.135
, pp. 501-544
-
-
Adomian, G.1
-
14
-
-
0347450513
-
A new algorithm for calculating Adomian polynomials for nonlinear operators
-
Wazwaz A.M. A new algorithm for calculating Adomian polynomials for nonlinear operators. Appl. Math. Comput. 2000, 111:33-51.
-
(2000)
Appl. Math. Comput.
, vol.111
, pp. 33-51
-
-
Wazwaz, A.M.1
-
15
-
-
26844495279
-
Extended Newton's method for a system of nonlinear equations by modified Adomian decomposition method
-
Abbasbandy S. Extended Newton's method for a system of nonlinear equations by modified Adomian decomposition method. Appl. Math. Comput. 2005, 170:648-656.
-
(2005)
Appl. Math. Comput.
, vol.170
, pp. 648-656
-
-
Abbasbandy, S.1
-
16
-
-
73449134442
-
Improved Adomian decomposition method
-
Abassy T.A. Improved Adomian decomposition method. Comput. Math. Appl. 2010, 59:42-54.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 42-54
-
-
Abassy, T.A.1
-
17
-
-
77955330863
-
Approximate rational Jacobi elliptic function solutions of the fractional differential equations via the enhanced Adomian decomposition method
-
Song L.N., Wang W.G. Approximate rational Jacobi elliptic function solutions of the fractional differential equations via the enhanced Adomian decomposition method. Phys. Lett. A 2010, 374:3190-3196.
-
(2010)
Phys. Lett. A
, vol.374
, pp. 3190-3196
-
-
Song, L.N.1
Wang, W.G.2
-
19
-
-
55549136027
-
Notes on the homotopy analysis method: some definitions and theorems
-
Liao S.J. Notes on the homotopy analysis method: some definitions and theorems. Commun. Nonlinear Sci. Numer. Simulat. 2009, 14:983-997.
-
(2009)
Commun. Nonlinear Sci. Numer. Simulat.
, vol.14
, pp. 983-997
-
-
Liao, S.J.1
-
20
-
-
76049117931
-
An optimal homotopy-analysis approach for strongly nonlinear differential equations
-
Liao S.J. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simulat. 2010, 15:2003-2016.
-
(2010)
Commun. Nonlinear Sci. Numer. Simulat.
, vol.15
, pp. 2003-2016
-
-
Liao, S.J.1
-
22
-
-
77953992014
-
Analytic solution of the Sharma-Tasso-Olver equation by homotopy analysis method
-
Abbasbandy S., Ashtiani M., Babolian Esmail Analytic solution of the Sharma-Tasso-Olver equation by homotopy analysis method. Z. Naturforsch. 2010, 65a:285-290.
-
(2010)
Z. Naturforsch.
, vol.65 a
, pp. 285-290
-
-
Abbasbandy, S.1
Ashtiani, M.2
Babolian, E.3
-
23
-
-
74149089078
-
Analytical approximate solutions of systems of fractional algebraic-differential equations by homotopy analysis method
-
Zurigat M., Momani S., Alawneh A. Analytical approximate solutions of systems of fractional algebraic-differential equations by homotopy analysis method. Comput. Math. Appl. 2010, 59:1227-1235.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1227-1235
-
-
Zurigat, M.1
Momani, S.2
Alawneh, A.3
-
24
-
-
56549119386
-
The homotopy analysis method to solve the Burgers-Huxley equation
-
Molabahrami A., Khani F. The homotopy analysis method to solve the Burgers-Huxley equation. Nonlinear Anal.-Real 2009, 10:589-600.
-
(2009)
Nonlinear Anal.-Real
, vol.10
, pp. 589-600
-
-
Molabahrami, A.1
Khani, F.2
-
25
-
-
34249337378
-
The solution of coupled Burgers' equations using Adomian-Padé technique
-
Dehghan M., Hamidi A., Shakourifar M. The solution of coupled Burgers' equations using Adomian-Padé technique. Appl. Math. Comput. 2007, 189:1034-1047.
-
(2007)
Appl. Math. Comput.
, vol.189
, pp. 1034-1047
-
-
Dehghan, M.1
Hamidi, A.2
Shakourifar, M.3
-
26
-
-
33751538987
-
A new general algebraic method with symbolic computation and its application to two nonlinear differential equations with nonlinear terms of any order
-
Wang J., Zhang X.L., Song L.N., Zhang H.Q. A new general algebraic method with symbolic computation and its application to two nonlinear differential equations with nonlinear terms of any order. Appl. Math. Comput. 2006, 182:1330-1340.
-
(2006)
Appl. Math. Comput.
, vol.182
, pp. 1330-1340
-
-
Wang, J.1
Zhang, X.L.2
Song, L.N.3
Zhang, H.Q.4
|