-
1
-
-
84898063697
-
Competing in the dark: An efficient algorithm for bandit linear optimization
-
J. Abernethy, E. Hazan, and A. Rakhlin. Competing in the dark: An efficient algorithm for bandit linear optimization. In COLT, pages 263-274, 2008.
-
(2008)
COLT
, pp. 263-274
-
-
Abernethy, J.1
Hazan, E.2
Rakhlin, A.3
-
2
-
-
83255166878
-
Existence of unbiased estimators in sequential binomial experiments
-
S. Bhandari and A. Bose. Existence of unbiased estimators in sequential binomial experiments. Sankhya: The Indian Journal of Statistics, 52(1):127-130, 1990.
-
(1990)
Sankhya: The Indian Journal of Statistics
, vol.52
, Issue.1
, pp. 127-130
-
-
Bhandari, S.1
Bose, A.2
-
3
-
-
0347596605
-
Uniform-distribution attribute noise learnability
-
N. Bshouty, J. Jackson, and C. Tamon. Uniform-distribution attribute noise learnability. Information and Computation, 187(2):277-290, 2003.
-
(2003)
Information and Computation
, vol.187
, Issue.2
, pp. 277-290
-
-
Bshouty, N.1
Jackson, J.2
Tamon, C.3
-
4
-
-
4544304381
-
On the generalization ability of on-line learning algorithms
-
September
-
N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning algorithms. IEEE Transactions on Information Theory, 50(9):2050-2057, September 2004.
-
(2004)
IEEE Transactions on Information Theory
, vol.50
, Issue.9
, pp. 2050-2057
-
-
Cesa-Bianchi, N.1
Conconi, A.2
Gentile, C.3
-
5
-
-
0010572906
-
Sample-efficient strategies for learning in the presence of noise
-
N. Cesa-Bianchi, E. Dichterman, P. Fischer, E. Shamir, and H. Simon. Sample-efficient strategies for learning in the presence of noise. Journal of the ACM, 46(5):684-719, 1999.
-
(1999)
Journal of the ACM
, vol.46
, Issue.5
, pp. 684-719
-
-
Cesa-Bianchi, N.1
Dichterman, E.2
Fischer, P.3
Shamir, E.4
Simon, H.5
-
8
-
-
20744454447
-
Online convex optimization in the bandit setting: Gradient descent without a gradient
-
A. Flaxman, A. Tauman Kalai, and H. McMahan. Online convex optimization in the bandit setting: gradient descent without a gradient. In Proceedings of SODA, pages 385-394, 2005.
-
(2005)
Proceedings of SODA
, pp. 385-394
-
-
Flaxman, A.1
Tauman Kalai, A.2
McMahan, H.3
-
9
-
-
0013411860
-
Can pac learning algorithms tolerate random attribute noise?
-
S. Goldman and R. Sloan. Can pac learning algorithms tolerate random attribute noise? Al-gorithmica, 14(1):70-84, 1995.
-
(1995)
Al-gorithmica
, vol.14
, Issue.1
, pp. 70-84
-
-
Goldman, S.1
Sloan, R.2
-
10
-
-
0027640858
-
Learning in the presence of Malicious errors
-
M. Kearns and M. Li. Learning in the presence of malicious errors. SIAM Journal on Computing, 22(4):807-837, 1993.
-
(1993)
SIAM Journal on Computing
, vol.22
, Issue.4
, pp. 807-837
-
-
Kearns, M.1
Li, M.2
-
11
-
-
0000511449
-
Redundant noisy attributes, attribute errors, and linear threshold learning using winnow
-
N. Littlestone. Redundant noisy attributes, attribute errors, and linear threshold learning using Winnow. In Proceedings of COLT, pages 147-156, 1991.
-
(1991)
Proceedings of COLT
, pp. 147-156
-
-
Littlestone, N.1
-
12
-
-
84898030282
-
A study of the effect of different types of noise on the precision of supervised learning techniques
-
D. Nettleton, A. Orriols-Puig, and A. Fornells. A study of the effect of different types of noise on the precision of supervised learning techniques. Artificial Intelligence Review, 2010.
-
(2010)
Artificial Intelligence Review
-
-
Nettleton, D.1
Orriols-Puig, A.2
Fornells, A.3
-
13
-
-
33645505792
-
Convexity, classification and risk bounds
-
March
-
M. Jordan P. Bartlett and J. McAuliffe. Convexity, classification and risk bounds. Journal of the American Statistical Association, 101(473):138-156, March 2006.
-
(2006)
Journal of the American Statistical Association
, vol.101
, Issue.473
, pp. 138-156
-
-
Jordan, M.1
Bartlett, P.2
McAuliffe, J.3
-
14
-
-
0041877169
-
Estimation of entropy and mutual information
-
L. Paninski. Estimation of entropy and mutual information. Neural Computation, 15(6):1191-1253, 2003.
-
(2003)
Neural Computation
, vol.15
, Issue.6
, pp. 1191-1253
-
-
Paninski, L.1
-
18
-
-
1942484421
-
Online convex programming and generalized infinitesimal gradient ascent
-
M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings of ICML, pages 928-936, 2003.
-
(2003)
Proceedings of ICML
, pp. 928-936
-
-
Zinkevich, M.1
|