메뉴 건너뛰기




Volumn 37, Issue , 2013, Pages 154-164

Applying the learning rate adaptation to the matrix factorization based collaborative filtering

Author keywords

Collaborative filtering; Latent Factor; Learning rate adaptation; Matrix factorization; Recommender system

Indexed keywords

BASE MODELS; COLLABORATIVE FILTERING; CONVERGENCE RATES; DELTA-BAR-DELTA; KEY FACTORS; LARGE DATASETS; LATENT FACTOR; LEARNING RATES; MATRIX FACTORIZATIONS; RECOMMENDATION ACCURACY; RECOMMENDATION PERFORMANCE; SCALABLE APPROACH; STEP SIZE;

EID: 84870062173     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2012.07.016     Document Type: Article
Times cited : (64)

References (34)
  • 2
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • G. Adomavicius, and A. Tuzhilin Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions IEEE Trans. Knowl. Data Eng. 17 2005 734 749
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 3
    • 84976668719 scopus 로고
    • Using collaborative filtering to weave an information tapestry
    • D. Goldberg, D. Nichols, B.M. Oki, and D. Terry Using collaborative filtering to weave an information tapestry Commun. ACM 35 1992 61 70
    • (1992) Commun. ACM , vol.35 , pp. 61-70
    • Goldberg, D.1    Nichols, D.2    Oki, B.M.3    Terry, D.4
  • 4
    • 3242713086 scopus 로고    scopus 로고
    • Context boosting collaborative recommendations
    • C. Hayes, and P. Cunningham Context boosting collaborative recommendations Knowl-Based Syst. 17 2004 131 138
    • (2004) Knowl-Based Syst. , vol.17 , pp. 131-138
    • Hayes, C.1    Cunningham, P.2
  • 5
    • 33746923130 scopus 로고    scopus 로고
    • Collaborative recommending using formal concept analysis
    • P. Boucher-Ryan, and D. Bridge Collaborative recommending using formal concept analysis Knowl-Based Syst. 19 2006 309 315
    • (2006) Knowl-Based Syst. , vol.19 , pp. 309-315
    • Boucher-Ryan, P.1    Bridge, D.2
  • 6
    • 56649119052 scopus 로고    scopus 로고
    • Recommendation based on rational inferences in collaborative filtering
    • J.-M. Yang, and K.-F. Li Recommendation based on rational inferences in collaborative filtering Knowl-Based Syst. 22 2009 105 114
    • (2009) Knowl-Based Syst. , vol.22 , pp. 105-114
    • Yang, J.-M.1    Li, K.-F.2
  • 7
    • 77955417387 scopus 로고    scopus 로고
    • A new collaborative filtering metric that improves the behavior of recommender systems
    • J. Bobadilla, F. Serradilla, and J. Bernal A new collaborative filtering metric that improves the behavior of recommender systems Knowl-Based Syst. 23 2010 520 528
    • (2010) Knowl-Based Syst. , vol.23 , pp. 520-528
    • Bobadilla, J.1    Serradilla, F.2    Bernal, J.3
  • 8
    • 80051474675 scopus 로고    scopus 로고
    • Improving collaborative filtering recommender system results and performance using genetic algorithms
    • J. Bobadilla, F. Ortega, A. Hernando, and J. Alcalá Improving collaborative filtering recommender system results and performance using genetic algorithms Knowl-Based Syst. 24 2011 1310 1316
    • (2011) Knowl-Based Syst. , vol.24 , pp. 1310-1316
    • Bobadilla, J.1    Ortega, F.2    Hernando, A.3    Alcalá, J.4
  • 9
    • 84855945024 scopus 로고    scopus 로고
    • A careful assessment of recommendation algorithms related to dimension reduction techniques
    • C.-X. Yin, and Q.-K. Peng A careful assessment of recommendation algorithms related to dimension reduction techniques Knowl-Based Syst. 27 2012 407 423
    • (2012) Knowl-Based Syst. , vol.27 , pp. 407-423
    • Yin, C.-X.1    Peng, Q.-K.2
  • 11
    • 3042742744 scopus 로고    scopus 로고
    • Latent semantic models for collaborative filtering
    • T. Hofmann Latent semantic models for collaborative filtering ACM Trans. Inf. Syst. 22 2004 89 115
    • (2004) ACM Trans. Inf. Syst. , vol.22 , pp. 89-115
    • Hofmann, T.1
  • 14
  • 18
    • 64149121935 scopus 로고    scopus 로고
    • Scalable collaborative filtering approaches for large recommender systems
    • G. Takács, I. Pilászy, Bottyán Németh, and D. Tikky Scalable collaborative filtering approaches for large recommender systems J. Mach. Learn. Res. 10 2009 623 656
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 623-656
    • Takács, G.1    Pilászy, I.2    Németh, B.3    Tikky, D.4
  • 19
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. Bell, and C. Volinsky Matrix factorization techniques for recommender systems IEEE Comput. 42 2009 30 37
    • (2009) IEEE Comput. , vol.42 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 20
    • 80052883059 scopus 로고    scopus 로고
    • Advances in collaborative filtering
    • F. Ricci, L. Rokach, B. Shapira, P.B. Kantor, Springer US
    • Y. Koren, and R. Bell Advances in collaborative filtering F. Ricci, L. Rokach, B. Shapira, P.B. Kantor, Recommender Systems Handbook 2011 Springer US
    • (2011) Recommender Systems Handbook
    • Koren, Y.1    Bell, R.2
  • 21
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • R. Jacobs Increased rates of convergence through learning rate adaptation Neural Networks 1 1988 295 307
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, R.1
  • 23
    • 0031127257 scopus 로고    scopus 로고
    • Efficient backpropagation learning using optimal learning rate and momentum
    • X.-H. Yu, and G.-A. Chen Efficient backpropagation learning using optimal learning rate and momentum Neural Networks 10 1997 517 527
    • (1997) Neural Networks , vol.10 , pp. 517-527
    • Yu, X.-H.1    Chen, G.-A.2
  • 25
    • 0033209687 scopus 로고    scopus 로고
    • Improving the convergence of the backpropagation algorithm using learning rate adaptation methods
    • G.D. Magoulas, M.N. Vrahatis, and G.S. Androulakis Improving the convergence of the backpropagation algorithm using learning rate adaptation methods Neural Comput. 11 1999 1769 1796
    • (1999) Neural Comput. , vol.11 , pp. 1769-1796
    • Magoulas, G.D.1    Vrahatis, M.N.2    Androulakis, G.S.3
  • 31
    • 84855912132 scopus 로고    scopus 로고
    • Incremental collaborative filtering recommender based on regularized matrix factorization
    • X. Luo, Y. Xia, and Q. Zhu Incremental collaborative filtering recommender based on regularized matrix factorization Knowl-Based Syst. 27 2012 271 280
    • (2012) Knowl-Based Syst. , vol.27 , pp. 271-280
    • Luo, X.1    Xia, Y.2    Zhu, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.