메뉴 건너뛰기




Volumn 22, Issue 12, 2012, Pages 634-643

Towards a bottom-up reconstitution of bacterial cell division

Author keywords

Constructive synthetic biology; Cytomimetic biochemistry; Escherichia coli; FtsZ; Macromolecular interactions; Min system

Indexed keywords

NANODISC;

EID: 84869878393     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2012.09.003     Document Type: Review
Times cited : (64)

References (99)
  • 1
    • 28544451327 scopus 로고    scopus 로고
    • Foundations for engineering biology
    • Endy D. Foundations for engineering biology. Nature 2005, 438:449-453.
    • (2005) Nature , vol.438 , pp. 449-453
    • Endy, D.1
  • 2
    • 51049084395 scopus 로고    scopus 로고
    • Synthetic biology: discovering new worlds and new words
    • de Lorenzo V., Danchin A. Synthetic biology: discovering new worlds and new words. EMBO Rep. 2008, 9:822-827.
    • (2008) EMBO Rep. , vol.9 , pp. 822-827
    • de Lorenzo, V.1    Danchin, A.2
  • 3
    • 69249235852 scopus 로고    scopus 로고
    • Biology under construction: in vitro reconstitution of cellular function
    • Liu A.P., Fletcher D.A. Biology under construction: in vitro reconstitution of cellular function. Nat. Rev. Mol. Cell Biol. 2009, 10:644-650.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 644-650
    • Liu, A.P.1    Fletcher, D.A.2
  • 4
    • 84863633733 scopus 로고    scopus 로고
    • Approaches to chemical synthetic biology
    • Chiarabelli C., et al. Approaches to chemical synthetic biology. FEBS Lett. 2012, 586:2138-2145.
    • (2012) FEBS Lett. , vol.586 , pp. 2138-2145
    • Chiarabelli, C.1
  • 6
    • 66249088017 scopus 로고    scopus 로고
    • The second wave of synthetic biology: from modules to systems
    • Purnick P.E., Weiss R. The second wave of synthetic biology: from modules to systems. Nat. Rev. Mol. Cell Biol. 2009, 10:410-422.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 410-422
    • Purnick, P.E.1    Weiss, R.2
  • 7
    • 80052493200 scopus 로고    scopus 로고
    • Synthetic biology: integrated gene circuits
    • Nandagopal N., Elowitz M.B. Synthetic biology: integrated gene circuits. Science 2011, 333:1244-1248.
    • (2011) Science , vol.333 , pp. 1244-1248
    • Nandagopal, N.1    Elowitz, M.B.2
  • 8
    • 33644920433 scopus 로고    scopus 로고
    • Septum enlightenment: assembly of bacterial division proteins
    • Vicente M., et al. Septum enlightenment: assembly of bacterial division proteins. J. Bacteriol. 2006, 188:19-27.
    • (2006) J. Bacteriol. , vol.188 , pp. 19-27
    • Vicente, M.1
  • 9
    • 83855160828 scopus 로고    scopus 로고
    • Nucleoid occlusion and bacterial cell division
    • Wu L.J., Errington J. Nucleoid occlusion and bacterial cell division. Nat. Rev. Microbiol. 2011, 10:8-12.
    • (2011) Nat. Rev. Microbiol. , vol.10 , pp. 8-12
    • Wu, L.J.1    Errington, J.2
  • 10
    • 33745209434 scopus 로고    scopus 로고
    • The order of the ring: assembly of Escherichia coli cell division components
    • Vicente M., Rico A.I. The order of the ring: assembly of Escherichia coli cell division components. Mol. Microbiol. 2006, 61:5-8.
    • (2006) Mol. Microbiol. , vol.61 , pp. 5-8
    • Vicente, M.1    Rico, A.I.2
  • 11
    • 77955271619 scopus 로고    scopus 로고
    • Strong FtsZ is with the force: mechanisms to constrict bacteria
    • Mingorance J., et al. Strong FtsZ is with the force: mechanisms to constrict bacteria. Trends Microbiol. 2010, 18:348-356.
    • (2010) Trends Microbiol. , vol.18 , pp. 348-356
    • Mingorance, J.1
  • 12
    • 78650078263 scopus 로고    scopus 로고
    • FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one
    • Erickson H.P., et al. FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol. Mol. Biol. Rev. 2010, 74:504-528.
    • (2010) Microbiol. Mol. Biol. Rev. , vol.74 , pp. 504-528
    • Erickson, H.P.1
  • 13
    • 84155167132 scopus 로고    scopus 로고
    • ftsA* mutants impaired for self-interaction bypass ZipA suggesting a model in which ftsA*'s self-interaction competes with its ability to recruit downstream division proteins
    • Pichoff S., et al. ftsA* mutants impaired for self-interaction bypass ZipA suggesting a model in which ftsA*'s self-interaction competes with its ability to recruit downstream division proteins. Mol. Microbiol. 2012, 83:151-167.
    • (2012) Mol. Microbiol. , vol.83 , pp. 151-167
    • Pichoff, S.1
  • 14
    • 69249126551 scopus 로고    scopus 로고
    • Bacterial cell division: assembly, maintenance and disassembly of the Z ring
    • Adams D.W., Errington J. Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat. Rev. Microbiol. 2009, 7:642-653.
    • (2009) Nat. Rev. Microbiol. , vol.7 , pp. 642-653
    • Adams, D.W.1    Errington, J.2
  • 15
    • 82555170224 scopus 로고    scopus 로고
    • Independence between GTPase active sites in the Escherichia coli cell division protein FtsZ
    • Salvarelli E., et al. Independence between GTPase active sites in the Escherichia coli cell division protein FtsZ. FEBS Lett. 2011, 585:3880-3883.
    • (2011) FEBS Lett. , vol.585 , pp. 3880-3883
    • Salvarelli, E.1
  • 16
    • 15744385269 scopus 로고    scopus 로고
    • Tethering the Z ring to the membrane through a conserved membrane targeting sequence in ftsA*
    • Pichoff S., Lutkenhaus J. Tethering the Z ring to the membrane through a conserved membrane targeting sequence in ftsA*. Mol. Microbiol. 2005, 55:1722-1734.
    • (2005) Mol. Microbiol. , vol.55 , pp. 1722-1734
    • Pichoff, S.1    Lutkenhaus, J.2
  • 17
    • 0031444158 scopus 로고    scopus 로고
    • Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in E. coli
    • Hale C.A., de Boer P.A. Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in E. coli. Cell 1997, 88:175-185.
    • (1997) Cell , vol.88 , pp. 175-185
    • Hale, C.A.1    de Boer, P.A.2
  • 18
    • 0036063886 scopus 로고    scopus 로고
    • Structural evidence that the P/Q domain of ZipA is an unstructured, flexible tether between the membrane and the C-terminal FtsZ-binding domain
    • Ohashi T., et al. Structural evidence that the P/Q domain of ZipA is an unstructured, flexible tether between the membrane and the C-terminal FtsZ-binding domain. J. Bacteriol. 2002, 184:4313-4315.
    • (2002) J. Bacteriol. , vol.184 , pp. 4313-4315
    • Ohashi, T.1
  • 19
    • 33947393232 scopus 로고    scopus 로고
    • The ftsA* gain-of-function allele of Escherichia coli and its effects on the stability and dynamics of the Z ring
    • Geissler B., et al. The ftsA* gain-of-function allele of Escherichia coli and its effects on the stability and dynamics of the Z ring. Microbiology 2007, 153:814-825.
    • (2007) Microbiology , vol.153 , pp. 814-825
    • Geissler, B.1
  • 20
    • 70350493966 scopus 로고    scopus 로고
    • The dynamic nature of the bacterial cytoskeleton
    • Vats P., et al. The dynamic nature of the bacterial cytoskeleton. Cell. Mol. Life Sci. 2009, 66:3353-3362.
    • (2009) Cell. Mol. Life Sci. , vol.66 , pp. 3353-3362
    • Vats, P.1
  • 21
    • 34548630230 scopus 로고    scopus 로고
    • Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring
    • Lutkenhaus J. Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu. Rev. Biochem. 2007, 76:539-562.
    • (2007) Annu. Rev. Biochem. , vol.76 , pp. 539-562
    • Lutkenhaus, J.1
  • 22
    • 19444386428 scopus 로고    scopus 로고
    • SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli
    • Bernhardt T.G., de Boer P.A. SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol. Cell 2005, 18:555-564.
    • (2005) Mol. Cell , vol.18 , pp. 555-564
    • Bernhardt, T.G.1    de Boer, P.A.2
  • 23
    • 0033609139 scopus 로고    scopus 로고
    • Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli
    • Raskin D.M., de Boer P.A. Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:4971-4976.
    • (1999) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , pp. 4971-4976
    • Raskin, D.M.1    de Boer, P.A.2
  • 24
    • 0032743092 scopus 로고    scopus 로고
    • MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli
    • Raskin D.M., de Boer P.A. MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli. J. Bacteriol. 1999, 181:6419-6424.
    • (1999) J. Bacteriol. , vol.181 , pp. 6419-6424
    • Raskin, D.M.1    de Boer, P.A.2
  • 25
    • 55949084028 scopus 로고    scopus 로고
    • Min oscillation in bacteria
    • Lutkenhaus J. Min oscillation in bacteria. Adv. Exp. Med. Biol. 2008, 641:49-61.
    • (2008) Adv. Exp. Med. Biol. , vol.641 , pp. 49-61
    • Lutkenhaus, J.1
  • 26
    • 79955855203 scopus 로고    scopus 로고
    • Protein self-organization: lessons from the Min system
    • Loose M., et al. Protein self-organization: lessons from the Min system. Annu. Rev. Biophys. 2011, 40:315-336.
    • (2011) Annu. Rev. Biophys. , vol.40 , pp. 315-336
    • Loose, M.1
  • 27
    • 0033592949 scopus 로고    scopus 로고
    • The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization
    • Hu Z., et al. The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:14819-14824.
    • (1999) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , pp. 14819-14824
    • Hu, Z.1
  • 28
    • 39249085850 scopus 로고    scopus 로고
    • MinC spatially controls bacterial cytokinesis by antagonizing the scaffolding function of FtsZ
    • Dajkovic A., et al. MinC spatially controls bacterial cytokinesis by antagonizing the scaffolding function of FtsZ. Curr. Biol. 2008, 18:235-244.
    • (2008) Curr. Biol. , vol.18 , pp. 235-244
    • Dajkovic, A.1
  • 29
    • 0030780085 scopus 로고    scopus 로고
    • The MinE ring: an FtsZ-independent cell structure required for selection of the correct division site in E. coli
    • Raskin D.M., de Boer P.A. The MinE ring: an FtsZ-independent cell structure required for selection of the correct division site in E. coli. Cell 1997, 91:685-694.
    • (1997) Cell , vol.91 , pp. 685-694
    • Raskin, D.M.1    de Boer, P.A.2
  • 30
    • 0038444526 scopus 로고    scopus 로고
    • Membrane binding by MinD involves insertion of hydrophobic residues within the C-terminal amphipathic helix into the bilayer
    • Zhou H., Lutkenhaus J. Membrane binding by MinD involves insertion of hydrophobic residues within the C-terminal amphipathic helix into the bilayer. J. Bacteriol. 2003, 185:4326-4335.
    • (2003) J. Bacteriol. , vol.185 , pp. 4326-4335
    • Zhou, H.1    Lutkenhaus, J.2
  • 31
    • 0034964370 scopus 로고    scopus 로고
    • Topological regulation of cell division in E. coli spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid
    • Hu Z., Lutkenhaus J. Topological regulation of cell division in E. coli spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid. Mol. Cell 2001, 7:1337-1343.
    • (2001) Mol. Cell , vol.7 , pp. 1337-1343
    • Hu, Z.1    Lutkenhaus, J.2
  • 32
    • 79960339327 scopus 로고    scopus 로고
    • Protein-membrane interactions: the virtue of minimal systems in systems biology
    • Arumugam S., et al. Protein-membrane interactions: the virtue of minimal systems in systems biology. Wiley Interdiscip. Rev. Syst. Biol. Med. 2011, 3:269-280.
    • (2011) Wiley Interdiscip. Rev. Syst. Biol. Med. , vol.3 , pp. 269-280
    • Arumugam, S.1
  • 33
    • 69249215233 scopus 로고    scopus 로고
    • Biomimetic membrane systems to study cellular organization
    • Loose M., Schwille P. Biomimetic membrane systems to study cellular organization. J. Struct. Biol. 2009, 168:143-151.
    • (2009) J. Struct. Biol. , vol.168 , pp. 143-151
    • Loose, M.1    Schwille, P.2
  • 34
    • 84867192170 scopus 로고    scopus 로고
    • Minimal systems to study membrane-cytoskeleton interactions
    • Vogel S.K., Schwille P. Minimal systems to study membrane-cytoskeleton interactions. Curr. Opin. Biotechnol. 2012, 23:758-765.
    • (2012) Curr. Opin. Biotechnol. , vol.23 , pp. 758-765
    • Vogel, S.K.1    Schwille, P.2
  • 36
    • 77649226985 scopus 로고    scopus 로고
    • Fluorescence correlation spectroscopy for the study of membrane dynamics and organization in giant unilamellar vesicles
    • Garcia-Saez A.J., et al. Fluorescence correlation spectroscopy for the study of membrane dynamics and organization in giant unilamellar vesicles. Methods Mol. Biol. 2010, 606:493-508.
    • (2010) Methods Mol. Biol. , vol.606 , pp. 493-508
    • Garcia-Saez, A.J.1
  • 37
    • 71549142855 scopus 로고    scopus 로고
    • Chapter 11 - Reconstitution of membrane proteins in phospholipid bilayer nanodiscs
    • Ritchie T.K., et al. Chapter 11 - Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol. 2009, 464:211-231.
    • (2009) Methods Enzymol. , vol.464 , pp. 211-231
    • Ritchie, T.K.1
  • 38
    • 84865737007 scopus 로고    scopus 로고
    • Dynamic interaction of the Escherichia coli cell division ZipA and FtsZ proteins evidenced in nanodiscs
    • Hernandez-Rocamora V.M., et al. Dynamic interaction of the Escherichia coli cell division ZipA and FtsZ proteins evidenced in nanodiscs. J. Biol. Chem. 2012, 287:30097-30104.
    • (2012) J. Biol. Chem. , vol.287 , pp. 30097-30104
    • Hernandez-Rocamora, V.M.1
  • 39
    • 77952992100 scopus 로고    scopus 로고
    • Single-molecule fluorescence spectroscopy using phospholipid bilayer nanodiscs
    • Nath A., et al. Single-molecule fluorescence spectroscopy using phospholipid bilayer nanodiscs. Methods Enzymol. 2010, 472:89-117.
    • (2010) Methods Enzymol. , vol.472 , pp. 89-117
    • Nath, A.1
  • 40
    • 44049091101 scopus 로고    scopus 로고
    • Spatial regulators for bacterial cell division self-organize into surface waves in vitro
    • Loose M., et al. Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 2008, 320:789-792.
    • (2008) Science , vol.320 , pp. 789-792
    • Loose, M.1
  • 41
    • 0034751570 scopus 로고    scopus 로고
    • The dimerization function of MinC resides in a structurally autonomous C-terminal domain
    • Szeto T.H., et al. The dimerization function of MinC resides in a structurally autonomous C-terminal domain. J. Bacteriol. 2001, 183:6684-6687.
    • (2001) J. Bacteriol. , vol.183 , pp. 6684-6687
    • Szeto, T.H.1
  • 42
    • 0036646101 scopus 로고    scopus 로고
    • Division site placement in E.coli: mutations that prevent formation of the MinE ring lead to loss of the normal midcell arrest of growth of polar MinD membrane domains
    • Shih Y.L., et al. Division site placement in E.coli: mutations that prevent formation of the MinE ring lead to loss of the normal midcell arrest of growth of polar MinD membrane domains. EMBO J. 2002, 21:3347-3357.
    • (2002) EMBO J. , vol.21 , pp. 3347-3357
    • Shih, Y.L.1
  • 43
    • 79961135028 scopus 로고    scopus 로고
    • The Min oscillator uses MinD-dependent conformational changes in MinE to spatially regulate cytokinesis
    • Park K.T., et al. The Min oscillator uses MinD-dependent conformational changes in MinE to spatially regulate cytokinesis. Cell 2011, 146:396-407.
    • (2011) Cell , vol.146 , pp. 396-407
    • Park, K.T.1
  • 44
    • 68949091841 scopus 로고    scopus 로고
    • Self-organization of the MinE protein ring in subcellular Min oscillations
    • Derr J., et al. Self-organization of the MinE protein ring in subcellular Min oscillations. Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 2009, 80:011922.
    • (2009) Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. , vol.80 , pp. 011922
    • Derr, J.1
  • 45
    • 22244444522 scopus 로고    scopus 로고
    • Min-oscillations in Escherichia coli induced by interactions of membrane-bound proteins
    • Meacci G., Kruse K. Min-oscillations in Escherichia coli induced by interactions of membrane-bound proteins. Phys. Biol. 2005, 2:89-97.
    • (2005) Phys. Biol. , vol.2 , pp. 89-97
    • Meacci, G.1    Kruse, K.2
  • 46
    • 77952838326 scopus 로고    scopus 로고
    • Crystal structure of Helicobacter pylori MinE, a cell division topological specificity factor
    • Kang G.B., et al. Crystal structure of Helicobacter pylori MinE, a cell division topological specificity factor. Mol. Microbiol. 2010, 76:1222-1231.
    • (2010) Mol. Microbiol. , vol.76 , pp. 1222-1231
    • Kang, G.B.1
  • 47
    • 76149129015 scopus 로고    scopus 로고
    • A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation
    • Arjunan S.N., Tomita M. A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation. Syst. Synth. Biol. 2010, 4:35-53.
    • (2010) Syst. Synth. Biol. , vol.4 , pp. 35-53
    • Arjunan, S.N.1    Tomita, M.2
  • 48
    • 74349123957 scopus 로고    scopus 로고
    • Direct MinE-membrane interaction contributes to the proper localization of MinDE in E. coli
    • Hsieh C.W., et al. Direct MinE-membrane interaction contributes to the proper localization of MinDE in E. coli. Mol. Microbiol. 2010, 75:499-512.
    • (2010) Mol. Microbiol. , vol.75 , pp. 499-512
    • Hsieh, C.W.1
  • 49
    • 44049091371 scopus 로고    scopus 로고
    • Reconstitution of contractile FtsZ rings in liposomes
    • Osawa M., et al. Reconstitution of contractile FtsZ rings in liposomes. Science 2008, 320:792-794.
    • (2008) Science , vol.320 , pp. 792-794
    • Osawa, M.1
  • 50
    • 70450224670 scopus 로고    scopus 로고
    • Curved FtsZ protofilaments generate bending forces on liposome membranes
    • Osawa M., et al. Curved FtsZ protofilaments generate bending forces on liposome membranes. EMBO J. 2009, 28:3476-3484.
    • (2009) EMBO J. , vol.28 , pp. 3476-3484
    • Osawa, M.1
  • 51
    • 79960160278 scopus 로고    scopus 로고
    • Inside-out Z rings--constriction with and without GTP hydrolysis
    • Osawa M., Erickson H.P. Inside-out Z rings--constriction with and without GTP hydrolysis. Mol. Microbiol. 2011, 81:571-579.
    • (2011) Mol. Microbiol. , vol.81 , pp. 571-579
    • Osawa, M.1    Erickson, H.P.2
  • 52
    • 79953208071 scopus 로고    scopus 로고
    • Reconstitution and organization of Escherichia coli proto-ring elements (FtsZ and ftsA*) inside giant unilamellar vesicles obtained from bacterial inner membranes
    • Jimenez M., et al. Reconstitution and organization of Escherichia coli proto-ring elements (FtsZ and ftsA*) inside giant unilamellar vesicles obtained from bacterial inner membranes. J. Biol. Chem. 2011, 286:11236-11241.
    • (2011) J. Biol. Chem. , vol.286 , pp. 11236-11241
    • Jimenez, M.1
  • 53
    • 84861204197 scopus 로고    scopus 로고
    • The early divisome protein ftsA* interacts directly through its 1c subdomain with the cytoplasmic domain of the late divisome protein FtsN
    • Busiek K.K., et al. The early divisome protein ftsA* interacts directly through its 1c subdomain with the cytoplasmic domain of the late divisome protein FtsN. J. Bacteriol. 2012, 194:1989-2000.
    • (2012) J. Bacteriol. , vol.194 , pp. 1989-2000
    • Busiek, K.K.1
  • 54
    • 77951562635 scopus 로고    scopus 로고
    • Role of Escherichia coli FtsN protein in the assembly and stability of the cell division ring
    • Rico A.I., et al. Role of Escherichia coli FtsN protein in the assembly and stability of the cell division ring. Mol. Microbiol. 2010, 76:760-771.
    • (2010) Mol. Microbiol. , vol.76 , pp. 760-771
    • Rico, A.I.1
  • 55
    • 84861427754 scopus 로고    scopus 로고
    • Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ
    • Mateos-Gil P., et al. Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:8133-8138.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 8133-8138
    • Mateos-Gil, P.1
  • 56
    • 84855775716 scopus 로고    scopus 로고
    • FtsZ polymers bound to lipid bilayers through ZipA form dynamic two dimensional networks
    • Mateos-Gil P., et al. FtsZ polymers bound to lipid bilayers through ZipA form dynamic two dimensional networks. Biochim. Biophys. Acta 2012, 1818:806-813.
    • (2012) Biochim. Biophys. Acta , vol.1818 , pp. 806-813
    • Mateos-Gil, P.1
  • 57
    • 84869467537 scopus 로고    scopus 로고
    • Surface topology engineering of membranes for mechanical investigation of tubulin homologue FtsZ
    • Arumugam S., Schwille P. Surface topology engineering of membranes for mechanical investigation of tubulin homologue FtsZ. Angew. Chem. Int. Ed. Engl. 2012, 51:1-6.
    • (2012) Angew. Chem. Int. Ed. Engl. , vol.51 , pp. 1-6
    • Arumugam, S.1    Schwille, P.2
  • 58
    • 84862988236 scopus 로고    scopus 로고
    • Isolation, characterization and lipid-binding properties of the recalcitrant ftsA* division protein from Escherichia coli
    • Martos A., et al. Isolation, characterization and lipid-binding properties of the recalcitrant ftsA* division protein from Escherichia coli. PLoS ONE 2012, 7:e39829.
    • (2012) PLoS ONE , vol.7
    • Martos, A.1
  • 59
    • 84865611230 scopus 로고    scopus 로고
    • Surface-enhanced raman scattering-based detection of the interactions between the essential cell division FtsZ protein and bacterial membrane elements
    • Ahijado-Guzman R., et al. Surface-enhanced raman scattering-based detection of the interactions between the essential cell division FtsZ protein and bacterial membrane elements. ACS Nano 2012, 6:7514-7520.
    • (2012) ACS Nano , vol.6 , pp. 7514-7520
    • Ahijado-Guzman, R.1
  • 60
    • 67249097621 scopus 로고    scopus 로고
    • Modeling the physics of FtsZ assembly and force generation
    • Erickson H.P. Modeling the physics of FtsZ assembly and force generation. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:9238-9243.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 9238-9243
    • Erickson, H.P.1
  • 61
    • 79955662274 scopus 로고    scopus 로고
    • Continuous droplet interface crossing encapsulation (cDICE) for high throughput monodisperse vesicle design
    • Abkarian M., et al. Continuous droplet interface crossing encapsulation (cDICE) for high throughput monodisperse vesicle design. Soft Matter 2011, 7:4610-4614.
    • (2011) Soft Matter , vol.7 , pp. 4610-4614
    • Abkarian, M.1
  • 62
    • 79959343843 scopus 로고    scopus 로고
    • Forming giant vesicles with controlled membrane composition, asymmetry, and contents
    • Richmond D.L., et al. Forming giant vesicles with controlled membrane composition, asymmetry, and contents. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:9431-9436.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 9431-9436
    • Richmond, D.L.1
  • 63
    • 67650556174 scopus 로고    scopus 로고
    • Inkjet formation of unilamellar lipid vesicles for cell-like encapsulation
    • Stachowiak J.C., et al. Inkjet formation of unilamellar lipid vesicles for cell-like encapsulation. Lab Chip 2009, 9:2003-2009.
    • (2009) Lab Chip , vol.9 , pp. 2003-2009
    • Stachowiak, J.C.1
  • 64
    • 80052724799 scopus 로고    scopus 로고
    • Transformation of actoHMM assembly confined in cell-sized liposome
    • Takiguchi K., et al. Transformation of actoHMM assembly confined in cell-sized liposome. Langmuir 2011, 27:11528-11535.
    • (2011) Langmuir , vol.27 , pp. 11528-11535
    • Takiguchi, K.1
  • 65
    • 84866551286 scopus 로고    scopus 로고
    • Geometry sensing by self-organized protein patterns
    • Schweizer J., Schwille P. Geometry sensing by self-organized protein patterns. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:15283-15288.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 15283-15288
    • Schweizer, J.1    Schwille, P.2
  • 66
    • 77953349206 scopus 로고    scopus 로고
    • Cooperation between giant DNA molecules and actin filaments in a microsphere
    • Negishi M., et al. Cooperation between giant DNA molecules and actin filaments in a microsphere. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2010, 81:051921.
    • (2010) Phys. Rev. E Stat. Nonlin. Soft Matter Phys. , vol.81 , pp. 051921
    • Negishi, M.1
  • 67
    • 17844409041 scopus 로고    scopus 로고
    • Dynamic microcompartmentation in synthetic cells
    • Long M.S., et al. Dynamic microcompartmentation in synthetic cells. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:5920-5925.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 5920-5925
    • Long, M.S.1
  • 68
    • 41049090929 scopus 로고    scopus 로고
    • Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences
    • Zhou H.X., et al. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 2008, 37:375-397.
    • (2008) Annu. Rev. Biophys. , vol.37 , pp. 375-397
    • Zhou, H.X.1
  • 69
    • 84856457757 scopus 로고    scopus 로고
    • Polymersomes in "gelly" polymersomes: toward structural cell mimicry
    • Marguet M., et al. Polymersomes in "gelly" polymersomes: toward structural cell mimicry. Langmuir 2012, 28:2035-2043.
    • (2012) Langmuir , vol.28 , pp. 2035-2043
    • Marguet, M.1
  • 70
    • 60149089263 scopus 로고    scopus 로고
    • Life without a wall or division machine in Bacillus subtilis
    • Leaver M., et al. Life without a wall or division machine in Bacillus subtilis. Nature 2009, 457:849-853.
    • (2009) Nature , vol.457 , pp. 849-853
    • Leaver, M.1
  • 71
    • 48449103699 scopus 로고    scopus 로고
    • Protein-membrane interaction probed by single plasmonic nanoparticles
    • Baciu C.L., et al. Protein-membrane interaction probed by single plasmonic nanoparticles. Nano Lett. 2008, 8:1724-1728.
    • (2008) Nano Lett. , vol.8 , pp. 1724-1728
    • Baciu, C.L.1
  • 72
    • 84856951611 scopus 로고    scopus 로고
    • Single unlabeled protein detection on individual plasmonic nanoparticles
    • Ament I., et al. Single unlabeled protein detection on individual plasmonic nanoparticles. Nano Lett. 2012, 12:1092-1095.
    • (2012) Nano Lett. , vol.12 , pp. 1092-1095
    • Ament, I.1
  • 73
    • 65549091378 scopus 로고    scopus 로고
    • The minimal size of liposome-based model cells brings about a remarkably enhanced entrapment and protein synthesis
    • Pereira de Souza T., et al. The minimal size of liposome-based model cells brings about a remarkably enhanced entrapment and protein synthesis. Chembiochem 2009, 10:1056-1063.
    • (2009) Chembiochem , vol.10 , pp. 1056-1063
    • Pereira de Souza, T.1
  • 74
    • 84859579073 scopus 로고    scopus 로고
    • Assembly of MreB filaments on liposome membranes: a synthetic biology approach
    • Maeda Y., et al. Assembly of MreB filaments on liposome membranes: a synthetic biology approach. ACS Synth. Biol. 2012, 1:53-59.
    • (2012) ACS Synth. Biol. , vol.1 , pp. 53-59
    • Maeda, Y.1
  • 75
    • 79952775158 scopus 로고    scopus 로고
    • Development of an artificial cell, from self-organization to computation and self-reproduction
    • Noireaux V., et al. Development of an artificial cell, from self-organization to computation and self-reproduction. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:3473-3480.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 3473-3480
    • Noireaux, V.1
  • 76
    • 36248938686 scopus 로고    scopus 로고
    • The structure of FtsZ filaments in vivo suggests a force-generating role in cell division
    • Li Z., et al. The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J. 2007, 26:4694-4708.
    • (2007) EMBO J. , vol.26 , pp. 4694-4708
    • Li, Z.1
  • 77
    • 80052505864 scopus 로고    scopus 로고
    • A grand challenge in biology
    • Alberts B. A grand challenge in biology. Science 2011, 333:1200.
    • (2011) Science , vol.333 , pp. 1200
    • Alberts, B.1
  • 78
    • 0035807879 scopus 로고    scopus 로고
    • Pattern formation in Escherichia coli: a model for the pole-to-pole oscillations of Min proteins and the localization of the division site
    • Meinhardt H., de Boer P.A. Pattern formation in Escherichia coli: a model for the pole-to-pole oscillations of Min proteins and the localization of the division site. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:14202-14207.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 14202-14207
    • Meinhardt, H.1    de Boer, P.A.2
  • 79
    • 15744398051 scopus 로고    scopus 로고
    • Role of membrane lipids in bacterial division-site selection
    • Mileykovskaya E., Dowhan W. Role of membrane lipids in bacterial division-site selection. Curr. Opin. Microbiol. 2005, 8:135-142.
    • (2005) Curr. Opin. Microbiol. , vol.8 , pp. 135-142
    • Mileykovskaya, E.1    Dowhan, W.2
  • 80
    • 33751395400 scopus 로고    scopus 로고
    • A curvature-mediated mechanism for localization of lipids to bacterial poles
    • Huang K.C., et al. A curvature-mediated mechanism for localization of lipids to bacterial poles. PLoS Comput. Biol. 2006, 2:e151.
    • (2006) PLoS Comput. Biol. , vol.2
    • Huang, K.C.1
  • 81
    • 1542358154 scopus 로고    scopus 로고
    • A hypothesis to explain division site selection in Escherichia coli by combining nucleoid occlusion and Min
    • Norris V., et al. A hypothesis to explain division site selection in Escherichia coli by combining nucleoid occlusion and Min. FEBS Lett. 2004, 561:3-10.
    • (2004) FEBS Lett. , vol.561 , pp. 3-10
    • Norris, V.1
  • 82
    • 84861679512 scopus 로고    scopus 로고
    • Crucial role for membrane fluidity in proliferation of primitive cells
    • Mercier R., et al. Crucial role for membrane fluidity in proliferation of primitive cells. Cell Rep. 2012, 1:417-423.
    • (2012) Cell Rep. , vol.1 , pp. 417-423
    • Mercier, R.1
  • 83
    • 71649100145 scopus 로고    scopus 로고
    • Lipid domains and mechanical plasticity of Escherichia coli lipid monolayers
    • Lopez-Montero I., et al. Lipid domains and mechanical plasticity of Escherichia coli lipid monolayers. Chem. Phys. Lipids 2010, 163:56-63.
    • (2010) Chem. Phys. Lipids , vol.163 , pp. 56-63
    • Lopez-Montero, I.1
  • 84
    • 84858165547 scopus 로고    scopus 로고
    • Active membrane viscoelasticity by the bacterial FtsZ-division protein
    • Lopez-Montero I., et al. Active membrane viscoelasticity by the bacterial FtsZ-division protein. Langmuir 2012, 28:4744-4753.
    • (2012) Langmuir , vol.28 , pp. 4744-4753
    • Lopez-Montero, I.1
  • 85
    • 33749125215 scopus 로고    scopus 로고
    • Biophysical properties of lipids and dynamic membranes
    • Janmey P.A., Kinnunen P.K. Biophysical properties of lipids and dynamic membranes. Trends Cell Biol. 2006, 16:538-546.
    • (2006) Trends Cell Biol. , vol.16 , pp. 538-546
    • Janmey, P.A.1    Kinnunen, P.K.2
  • 86
    • 0033956407 scopus 로고    scopus 로고
    • Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange
    • Mileykovskaya E., Dowhan W. Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J. Bacteriol. 2000, 182:1172-1175.
    • (2000) J. Bacteriol. , vol.182 , pp. 1172-1175
    • Mileykovskaya, E.1    Dowhan, W.2
  • 87
    • 54049136408 scopus 로고    scopus 로고
    • Mutual effects of MinD-membrane interaction: I. Changes in the membrane properties induced by MinD binding
    • Mazor S., et al. Mutual effects of MinD-membrane interaction: I. Changes in the membrane properties induced by MinD binding. Biochim. Biophys. Acta 2008, 1778:2496-2504.
    • (2008) Biochim. Biophys. Acta , vol.1778 , pp. 2496-2504
    • Mazor, S.1
  • 88
    • 77955449195 scopus 로고    scopus 로고
    • Membrane potential is important for bacterial cell division
    • Strahl H., Hamoen L.W. Membrane potential is important for bacterial cell division. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:12281-12286.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 12281-12286
    • Strahl, H.1    Hamoen, L.W.2
  • 89
    • 0022424027 scopus 로고
    • Specificity of lipid-protein interactions as determined by spectroscopic techniques
    • Devaux P.F., Seigneuret M. Specificity of lipid-protein interactions as determined by spectroscopic techniques. Biochim. Biophys. Acta 1985, 822:63-125.
    • (1985) Biochim. Biophys. Acta , vol.822 , pp. 63-125
    • Devaux, P.F.1    Seigneuret, M.2
  • 90
    • 0038191051 scopus 로고    scopus 로고
    • Concentration and assembly of the division ring proteins FtsZ, ftsA*, and ZipA during the Escherichia coli cell cycle
    • Rueda S., et al. Concentration and assembly of the division ring proteins FtsZ, ftsA*, and ZipA during the Escherichia coli cell cycle. J. Bacteriol. 2003, 185:3344-3351.
    • (2003) J. Bacteriol. , vol.185 , pp. 3344-3351
    • Rueda, S.1
  • 91
    • 0032759784 scopus 로고    scopus 로고
    • The straight and curved conformation of FtsZ protofilaments-evidence for rapid exchange of GTP into the curved protofilament
    • Lu C., Erickson H.P. The straight and curved conformation of FtsZ protofilaments-evidence for rapid exchange of GTP into the curved protofilament. Cell Struct. Funct. 1999, 24:285-290.
    • (1999) Cell Struct. Funct. , vol.24 , pp. 285-290
    • Lu, C.1    Erickson, H.P.2
  • 92
    • 0036229552 scopus 로고    scopus 로고
    • ZipA is required for recruitment of FtsK, FtsQ, FtsL, and FtsN to the septal ring in Escherichia coli
    • Hale C.A., de Boer P.A. ZipA is required for recruitment of FtsK, FtsQ, FtsL, and FtsN to the septal ring in Escherichia coli. J. Bacteriol. 2002, 184:2552-2556.
    • (2002) J. Bacteriol. , vol.184 , pp. 2552-2556
    • Hale, C.A.1    de Boer, P.A.2
  • 93
    • 0036791675 scopus 로고    scopus 로고
    • A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ
    • Gueiros-Filho F.J., Losick R. A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. Genes Dev. 2002, 16:2544-2556.
    • (2002) Genes Dev. , vol.16 , pp. 2544-2556
    • Gueiros-Filho, F.J.1    Losick, R.2
  • 94
    • 0242584670 scopus 로고    scopus 로고
    • Essential cell division protein FtsZ assembles into one monomer-thick ribbons under conditions resembling the crowded intracellular environment
    • Gonzalez J.M., et al. Essential cell division protein FtsZ assembles into one monomer-thick ribbons under conditions resembling the crowded intracellular environment. J. Biol. Chem. 2003, 278:37664-37671.
    • (2003) J. Biol. Chem. , vol.278 , pp. 37664-37671
    • Gonzalez, J.M.1
  • 95
    • 0026344818 scopus 로고
    • Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli
    • Zimmerman S.B., Trach S.O. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J. Mol. Biol. 1991, 222:599-620.
    • (1991) J. Mol. Biol. , vol.222 , pp. 599-620
    • Zimmerman, S.B.1    Trach, S.O.2
  • 96
    • 0032079008 scopus 로고    scopus 로고
    • Biophysical compensation mechanisms buffering E. coli protein-nucleic acid interactions against changing environments
    • Record M.T., et al. Biophysical compensation mechanisms buffering E. coli protein-nucleic acid interactions against changing environments. Trends Biochem. Sci. 1998, 23:190-194.
    • (1998) Trends Biochem. Sci. , vol.23 , pp. 190-194
    • Record, M.T.1
  • 97
    • 79251640891 scopus 로고    scopus 로고
    • An inventory of the bacterial macromolecular components and their spatial organization
    • Vendeville A., et al. An inventory of the bacterial macromolecular components and their spatial organization. FEMS Microbiol. Rev. 2011, 35:395-414.
    • (2011) FEMS Microbiol. Rev. , vol.35 , pp. 395-414
    • Vendeville, A.1
  • 98
    • 1242321063 scopus 로고    scopus 로고
    • Life in a crowded world
    • Rivas G., et al. Life in a crowded world. EMBO Rep. 2004, 5:23-27.
    • (2004) EMBO Rep. , vol.5 , pp. 23-27
    • Rivas, G.1
  • 99
    • 0028940740 scopus 로고
    • Phase separation, due to macromolecular crowding, is the basis for microcompartmentation
    • Walter H., Brooks D.E. Phase separation, due to macromolecular crowding, is the basis for microcompartmentation. FEBS Lett. 1995, 361:135-139.
    • (1995) FEBS Lett. , vol.361 , pp. 135-139
    • Walter, H.1    Brooks, D.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.