-
1
-
-
28544451327
-
Foundations for engineering biology
-
Endy D. Foundations for engineering biology. Nature 2005, 438:449-453.
-
(2005)
Nature
, vol.438
, pp. 449-453
-
-
Endy, D.1
-
2
-
-
51049084395
-
Synthetic biology: discovering new worlds and new words
-
de Lorenzo V., Danchin A. Synthetic biology: discovering new worlds and new words. EMBO Rep. 2008, 9:822-827.
-
(2008)
EMBO Rep.
, vol.9
, pp. 822-827
-
-
de Lorenzo, V.1
Danchin, A.2
-
3
-
-
69249235852
-
Biology under construction: in vitro reconstitution of cellular function
-
Liu A.P., Fletcher D.A. Biology under construction: in vitro reconstitution of cellular function. Nat. Rev. Mol. Cell Biol. 2009, 10:644-650.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 644-650
-
-
Liu, A.P.1
Fletcher, D.A.2
-
4
-
-
84863633733
-
Approaches to chemical synthetic biology
-
Chiarabelli C., et al. Approaches to chemical synthetic biology. FEBS Lett. 2012, 586:2138-2145.
-
(2012)
FEBS Lett.
, vol.586
, pp. 2138-2145
-
-
Chiarabelli, C.1
-
6
-
-
66249088017
-
The second wave of synthetic biology: from modules to systems
-
Purnick P.E., Weiss R. The second wave of synthetic biology: from modules to systems. Nat. Rev. Mol. Cell Biol. 2009, 10:410-422.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 410-422
-
-
Purnick, P.E.1
Weiss, R.2
-
7
-
-
80052493200
-
Synthetic biology: integrated gene circuits
-
Nandagopal N., Elowitz M.B. Synthetic biology: integrated gene circuits. Science 2011, 333:1244-1248.
-
(2011)
Science
, vol.333
, pp. 1244-1248
-
-
Nandagopal, N.1
Elowitz, M.B.2
-
8
-
-
33644920433
-
Septum enlightenment: assembly of bacterial division proteins
-
Vicente M., et al. Septum enlightenment: assembly of bacterial division proteins. J. Bacteriol. 2006, 188:19-27.
-
(2006)
J. Bacteriol.
, vol.188
, pp. 19-27
-
-
Vicente, M.1
-
9
-
-
83855160828
-
Nucleoid occlusion and bacterial cell division
-
Wu L.J., Errington J. Nucleoid occlusion and bacterial cell division. Nat. Rev. Microbiol. 2011, 10:8-12.
-
(2011)
Nat. Rev. Microbiol.
, vol.10
, pp. 8-12
-
-
Wu, L.J.1
Errington, J.2
-
10
-
-
33745209434
-
The order of the ring: assembly of Escherichia coli cell division components
-
Vicente M., Rico A.I. The order of the ring: assembly of Escherichia coli cell division components. Mol. Microbiol. 2006, 61:5-8.
-
(2006)
Mol. Microbiol.
, vol.61
, pp. 5-8
-
-
Vicente, M.1
Rico, A.I.2
-
11
-
-
77955271619
-
Strong FtsZ is with the force: mechanisms to constrict bacteria
-
Mingorance J., et al. Strong FtsZ is with the force: mechanisms to constrict bacteria. Trends Microbiol. 2010, 18:348-356.
-
(2010)
Trends Microbiol.
, vol.18
, pp. 348-356
-
-
Mingorance, J.1
-
12
-
-
78650078263
-
FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one
-
Erickson H.P., et al. FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol. Mol. Biol. Rev. 2010, 74:504-528.
-
(2010)
Microbiol. Mol. Biol. Rev.
, vol.74
, pp. 504-528
-
-
Erickson, H.P.1
-
13
-
-
84155167132
-
ftsA* mutants impaired for self-interaction bypass ZipA suggesting a model in which ftsA*'s self-interaction competes with its ability to recruit downstream division proteins
-
Pichoff S., et al. ftsA* mutants impaired for self-interaction bypass ZipA suggesting a model in which ftsA*'s self-interaction competes with its ability to recruit downstream division proteins. Mol. Microbiol. 2012, 83:151-167.
-
(2012)
Mol. Microbiol.
, vol.83
, pp. 151-167
-
-
Pichoff, S.1
-
14
-
-
69249126551
-
Bacterial cell division: assembly, maintenance and disassembly of the Z ring
-
Adams D.W., Errington J. Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat. Rev. Microbiol. 2009, 7:642-653.
-
(2009)
Nat. Rev. Microbiol.
, vol.7
, pp. 642-653
-
-
Adams, D.W.1
Errington, J.2
-
15
-
-
82555170224
-
Independence between GTPase active sites in the Escherichia coli cell division protein FtsZ
-
Salvarelli E., et al. Independence between GTPase active sites in the Escherichia coli cell division protein FtsZ. FEBS Lett. 2011, 585:3880-3883.
-
(2011)
FEBS Lett.
, vol.585
, pp. 3880-3883
-
-
Salvarelli, E.1
-
16
-
-
15744385269
-
Tethering the Z ring to the membrane through a conserved membrane targeting sequence in ftsA*
-
Pichoff S., Lutkenhaus J. Tethering the Z ring to the membrane through a conserved membrane targeting sequence in ftsA*. Mol. Microbiol. 2005, 55:1722-1734.
-
(2005)
Mol. Microbiol.
, vol.55
, pp. 1722-1734
-
-
Pichoff, S.1
Lutkenhaus, J.2
-
17
-
-
0031444158
-
Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in E. coli
-
Hale C.A., de Boer P.A. Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in E. coli. Cell 1997, 88:175-185.
-
(1997)
Cell
, vol.88
, pp. 175-185
-
-
Hale, C.A.1
de Boer, P.A.2
-
18
-
-
0036063886
-
Structural evidence that the P/Q domain of ZipA is an unstructured, flexible tether between the membrane and the C-terminal FtsZ-binding domain
-
Ohashi T., et al. Structural evidence that the P/Q domain of ZipA is an unstructured, flexible tether between the membrane and the C-terminal FtsZ-binding domain. J. Bacteriol. 2002, 184:4313-4315.
-
(2002)
J. Bacteriol.
, vol.184
, pp. 4313-4315
-
-
Ohashi, T.1
-
19
-
-
33947393232
-
The ftsA* gain-of-function allele of Escherichia coli and its effects on the stability and dynamics of the Z ring
-
Geissler B., et al. The ftsA* gain-of-function allele of Escherichia coli and its effects on the stability and dynamics of the Z ring. Microbiology 2007, 153:814-825.
-
(2007)
Microbiology
, vol.153
, pp. 814-825
-
-
Geissler, B.1
-
20
-
-
70350493966
-
The dynamic nature of the bacterial cytoskeleton
-
Vats P., et al. The dynamic nature of the bacterial cytoskeleton. Cell. Mol. Life Sci. 2009, 66:3353-3362.
-
(2009)
Cell. Mol. Life Sci.
, vol.66
, pp. 3353-3362
-
-
Vats, P.1
-
21
-
-
34548630230
-
Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring
-
Lutkenhaus J. Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu. Rev. Biochem. 2007, 76:539-562.
-
(2007)
Annu. Rev. Biochem.
, vol.76
, pp. 539-562
-
-
Lutkenhaus, J.1
-
22
-
-
19444386428
-
SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli
-
Bernhardt T.G., de Boer P.A. SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol. Cell 2005, 18:555-564.
-
(2005)
Mol. Cell
, vol.18
, pp. 555-564
-
-
Bernhardt, T.G.1
de Boer, P.A.2
-
23
-
-
0033609139
-
Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli
-
Raskin D.M., de Boer P.A. Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:4971-4976.
-
(1999)
Proc. Natl. Acad. Sci. U.S.A.
, vol.96
, pp. 4971-4976
-
-
Raskin, D.M.1
de Boer, P.A.2
-
24
-
-
0032743092
-
MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli
-
Raskin D.M., de Boer P.A. MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli. J. Bacteriol. 1999, 181:6419-6424.
-
(1999)
J. Bacteriol.
, vol.181
, pp. 6419-6424
-
-
Raskin, D.M.1
de Boer, P.A.2
-
25
-
-
55949084028
-
Min oscillation in bacteria
-
Lutkenhaus J. Min oscillation in bacteria. Adv. Exp. Med. Biol. 2008, 641:49-61.
-
(2008)
Adv. Exp. Med. Biol.
, vol.641
, pp. 49-61
-
-
Lutkenhaus, J.1
-
26
-
-
79955855203
-
Protein self-organization: lessons from the Min system
-
Loose M., et al. Protein self-organization: lessons from the Min system. Annu. Rev. Biophys. 2011, 40:315-336.
-
(2011)
Annu. Rev. Biophys.
, vol.40
, pp. 315-336
-
-
Loose, M.1
-
27
-
-
0033592949
-
The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization
-
Hu Z., et al. The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:14819-14824.
-
(1999)
Proc. Natl. Acad. Sci. U.S.A.
, vol.96
, pp. 14819-14824
-
-
Hu, Z.1
-
28
-
-
39249085850
-
MinC spatially controls bacterial cytokinesis by antagonizing the scaffolding function of FtsZ
-
Dajkovic A., et al. MinC spatially controls bacterial cytokinesis by antagonizing the scaffolding function of FtsZ. Curr. Biol. 2008, 18:235-244.
-
(2008)
Curr. Biol.
, vol.18
, pp. 235-244
-
-
Dajkovic, A.1
-
29
-
-
0030780085
-
The MinE ring: an FtsZ-independent cell structure required for selection of the correct division site in E. coli
-
Raskin D.M., de Boer P.A. The MinE ring: an FtsZ-independent cell structure required for selection of the correct division site in E. coli. Cell 1997, 91:685-694.
-
(1997)
Cell
, vol.91
, pp. 685-694
-
-
Raskin, D.M.1
de Boer, P.A.2
-
30
-
-
0038444526
-
Membrane binding by MinD involves insertion of hydrophobic residues within the C-terminal amphipathic helix into the bilayer
-
Zhou H., Lutkenhaus J. Membrane binding by MinD involves insertion of hydrophobic residues within the C-terminal amphipathic helix into the bilayer. J. Bacteriol. 2003, 185:4326-4335.
-
(2003)
J. Bacteriol.
, vol.185
, pp. 4326-4335
-
-
Zhou, H.1
Lutkenhaus, J.2
-
31
-
-
0034964370
-
Topological regulation of cell division in E. coli spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid
-
Hu Z., Lutkenhaus J. Topological regulation of cell division in E. coli spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid. Mol. Cell 2001, 7:1337-1343.
-
(2001)
Mol. Cell
, vol.7
, pp. 1337-1343
-
-
Hu, Z.1
Lutkenhaus, J.2
-
32
-
-
79960339327
-
Protein-membrane interactions: the virtue of minimal systems in systems biology
-
Arumugam S., et al. Protein-membrane interactions: the virtue of minimal systems in systems biology. Wiley Interdiscip. Rev. Syst. Biol. Med. 2011, 3:269-280.
-
(2011)
Wiley Interdiscip. Rev. Syst. Biol. Med.
, vol.3
, pp. 269-280
-
-
Arumugam, S.1
-
33
-
-
69249215233
-
Biomimetic membrane systems to study cellular organization
-
Loose M., Schwille P. Biomimetic membrane systems to study cellular organization. J. Struct. Biol. 2009, 168:143-151.
-
(2009)
J. Struct. Biol.
, vol.168
, pp. 143-151
-
-
Loose, M.1
Schwille, P.2
-
34
-
-
84867192170
-
Minimal systems to study membrane-cytoskeleton interactions
-
Vogel S.K., Schwille P. Minimal systems to study membrane-cytoskeleton interactions. Curr. Opin. Biotechnol. 2012, 23:758-765.
-
(2012)
Curr. Opin. Biotechnol.
, vol.23
, pp. 758-765
-
-
Vogel, S.K.1
Schwille, P.2
-
36
-
-
77649226985
-
Fluorescence correlation spectroscopy for the study of membrane dynamics and organization in giant unilamellar vesicles
-
Garcia-Saez A.J., et al. Fluorescence correlation spectroscopy for the study of membrane dynamics and organization in giant unilamellar vesicles. Methods Mol. Biol. 2010, 606:493-508.
-
(2010)
Methods Mol. Biol.
, vol.606
, pp. 493-508
-
-
Garcia-Saez, A.J.1
-
37
-
-
71549142855
-
Chapter 11 - Reconstitution of membrane proteins in phospholipid bilayer nanodiscs
-
Ritchie T.K., et al. Chapter 11 - Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol. 2009, 464:211-231.
-
(2009)
Methods Enzymol.
, vol.464
, pp. 211-231
-
-
Ritchie, T.K.1
-
38
-
-
84865737007
-
Dynamic interaction of the Escherichia coli cell division ZipA and FtsZ proteins evidenced in nanodiscs
-
Hernandez-Rocamora V.M., et al. Dynamic interaction of the Escherichia coli cell division ZipA and FtsZ proteins evidenced in nanodiscs. J. Biol. Chem. 2012, 287:30097-30104.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 30097-30104
-
-
Hernandez-Rocamora, V.M.1
-
39
-
-
77952992100
-
Single-molecule fluorescence spectroscopy using phospholipid bilayer nanodiscs
-
Nath A., et al. Single-molecule fluorescence spectroscopy using phospholipid bilayer nanodiscs. Methods Enzymol. 2010, 472:89-117.
-
(2010)
Methods Enzymol.
, vol.472
, pp. 89-117
-
-
Nath, A.1
-
40
-
-
44049091101
-
Spatial regulators for bacterial cell division self-organize into surface waves in vitro
-
Loose M., et al. Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 2008, 320:789-792.
-
(2008)
Science
, vol.320
, pp. 789-792
-
-
Loose, M.1
-
41
-
-
0034751570
-
The dimerization function of MinC resides in a structurally autonomous C-terminal domain
-
Szeto T.H., et al. The dimerization function of MinC resides in a structurally autonomous C-terminal domain. J. Bacteriol. 2001, 183:6684-6687.
-
(2001)
J. Bacteriol.
, vol.183
, pp. 6684-6687
-
-
Szeto, T.H.1
-
42
-
-
0036646101
-
Division site placement in E.coli: mutations that prevent formation of the MinE ring lead to loss of the normal midcell arrest of growth of polar MinD membrane domains
-
Shih Y.L., et al. Division site placement in E.coli: mutations that prevent formation of the MinE ring lead to loss of the normal midcell arrest of growth of polar MinD membrane domains. EMBO J. 2002, 21:3347-3357.
-
(2002)
EMBO J.
, vol.21
, pp. 3347-3357
-
-
Shih, Y.L.1
-
43
-
-
79961135028
-
The Min oscillator uses MinD-dependent conformational changes in MinE to spatially regulate cytokinesis
-
Park K.T., et al. The Min oscillator uses MinD-dependent conformational changes in MinE to spatially regulate cytokinesis. Cell 2011, 146:396-407.
-
(2011)
Cell
, vol.146
, pp. 396-407
-
-
Park, K.T.1
-
44
-
-
68949091841
-
Self-organization of the MinE protein ring in subcellular Min oscillations
-
Derr J., et al. Self-organization of the MinE protein ring in subcellular Min oscillations. Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 2009, 80:011922.
-
(2009)
Phys. Rev. E: Stat. Nonlin. Soft Matter Phys.
, vol.80
, pp. 011922
-
-
Derr, J.1
-
45
-
-
22244444522
-
Min-oscillations in Escherichia coli induced by interactions of membrane-bound proteins
-
Meacci G., Kruse K. Min-oscillations in Escherichia coli induced by interactions of membrane-bound proteins. Phys. Biol. 2005, 2:89-97.
-
(2005)
Phys. Biol.
, vol.2
, pp. 89-97
-
-
Meacci, G.1
Kruse, K.2
-
46
-
-
77952838326
-
Crystal structure of Helicobacter pylori MinE, a cell division topological specificity factor
-
Kang G.B., et al. Crystal structure of Helicobacter pylori MinE, a cell division topological specificity factor. Mol. Microbiol. 2010, 76:1222-1231.
-
(2010)
Mol. Microbiol.
, vol.76
, pp. 1222-1231
-
-
Kang, G.B.1
-
47
-
-
76149129015
-
A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation
-
Arjunan S.N., Tomita M. A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation. Syst. Synth. Biol. 2010, 4:35-53.
-
(2010)
Syst. Synth. Biol.
, vol.4
, pp. 35-53
-
-
Arjunan, S.N.1
Tomita, M.2
-
48
-
-
74349123957
-
Direct MinE-membrane interaction contributes to the proper localization of MinDE in E. coli
-
Hsieh C.W., et al. Direct MinE-membrane interaction contributes to the proper localization of MinDE in E. coli. Mol. Microbiol. 2010, 75:499-512.
-
(2010)
Mol. Microbiol.
, vol.75
, pp. 499-512
-
-
Hsieh, C.W.1
-
49
-
-
44049091371
-
Reconstitution of contractile FtsZ rings in liposomes
-
Osawa M., et al. Reconstitution of contractile FtsZ rings in liposomes. Science 2008, 320:792-794.
-
(2008)
Science
, vol.320
, pp. 792-794
-
-
Osawa, M.1
-
50
-
-
70450224670
-
Curved FtsZ protofilaments generate bending forces on liposome membranes
-
Osawa M., et al. Curved FtsZ protofilaments generate bending forces on liposome membranes. EMBO J. 2009, 28:3476-3484.
-
(2009)
EMBO J.
, vol.28
, pp. 3476-3484
-
-
Osawa, M.1
-
51
-
-
79960160278
-
Inside-out Z rings--constriction with and without GTP hydrolysis
-
Osawa M., Erickson H.P. Inside-out Z rings--constriction with and without GTP hydrolysis. Mol. Microbiol. 2011, 81:571-579.
-
(2011)
Mol. Microbiol.
, vol.81
, pp. 571-579
-
-
Osawa, M.1
Erickson, H.P.2
-
52
-
-
79953208071
-
Reconstitution and organization of Escherichia coli proto-ring elements (FtsZ and ftsA*) inside giant unilamellar vesicles obtained from bacterial inner membranes
-
Jimenez M., et al. Reconstitution and organization of Escherichia coli proto-ring elements (FtsZ and ftsA*) inside giant unilamellar vesicles obtained from bacterial inner membranes. J. Biol. Chem. 2011, 286:11236-11241.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 11236-11241
-
-
Jimenez, M.1
-
53
-
-
84861204197
-
The early divisome protein ftsA* interacts directly through its 1c subdomain with the cytoplasmic domain of the late divisome protein FtsN
-
Busiek K.K., et al. The early divisome protein ftsA* interacts directly through its 1c subdomain with the cytoplasmic domain of the late divisome protein FtsN. J. Bacteriol. 2012, 194:1989-2000.
-
(2012)
J. Bacteriol.
, vol.194
, pp. 1989-2000
-
-
Busiek, K.K.1
-
54
-
-
77951562635
-
Role of Escherichia coli FtsN protein in the assembly and stability of the cell division ring
-
Rico A.I., et al. Role of Escherichia coli FtsN protein in the assembly and stability of the cell division ring. Mol. Microbiol. 2010, 76:760-771.
-
(2010)
Mol. Microbiol.
, vol.76
, pp. 760-771
-
-
Rico, A.I.1
-
55
-
-
84861427754
-
Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ
-
Mateos-Gil P., et al. Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:8133-8138.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 8133-8138
-
-
Mateos-Gil, P.1
-
56
-
-
84855775716
-
FtsZ polymers bound to lipid bilayers through ZipA form dynamic two dimensional networks
-
Mateos-Gil P., et al. FtsZ polymers bound to lipid bilayers through ZipA form dynamic two dimensional networks. Biochim. Biophys. Acta 2012, 1818:806-813.
-
(2012)
Biochim. Biophys. Acta
, vol.1818
, pp. 806-813
-
-
Mateos-Gil, P.1
-
57
-
-
84869467537
-
Surface topology engineering of membranes for mechanical investigation of tubulin homologue FtsZ
-
Arumugam S., Schwille P. Surface topology engineering of membranes for mechanical investigation of tubulin homologue FtsZ. Angew. Chem. Int. Ed. Engl. 2012, 51:1-6.
-
(2012)
Angew. Chem. Int. Ed. Engl.
, vol.51
, pp. 1-6
-
-
Arumugam, S.1
Schwille, P.2
-
58
-
-
84862988236
-
Isolation, characterization and lipid-binding properties of the recalcitrant ftsA* division protein from Escherichia coli
-
Martos A., et al. Isolation, characterization and lipid-binding properties of the recalcitrant ftsA* division protein from Escherichia coli. PLoS ONE 2012, 7:e39829.
-
(2012)
PLoS ONE
, vol.7
-
-
Martos, A.1
-
59
-
-
84865611230
-
Surface-enhanced raman scattering-based detection of the interactions between the essential cell division FtsZ protein and bacterial membrane elements
-
Ahijado-Guzman R., et al. Surface-enhanced raman scattering-based detection of the interactions between the essential cell division FtsZ protein and bacterial membrane elements. ACS Nano 2012, 6:7514-7520.
-
(2012)
ACS Nano
, vol.6
, pp. 7514-7520
-
-
Ahijado-Guzman, R.1
-
60
-
-
67249097621
-
Modeling the physics of FtsZ assembly and force generation
-
Erickson H.P. Modeling the physics of FtsZ assembly and force generation. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:9238-9243.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 9238-9243
-
-
Erickson, H.P.1
-
61
-
-
79955662274
-
Continuous droplet interface crossing encapsulation (cDICE) for high throughput monodisperse vesicle design
-
Abkarian M., et al. Continuous droplet interface crossing encapsulation (cDICE) for high throughput monodisperse vesicle design. Soft Matter 2011, 7:4610-4614.
-
(2011)
Soft Matter
, vol.7
, pp. 4610-4614
-
-
Abkarian, M.1
-
62
-
-
79959343843
-
Forming giant vesicles with controlled membrane composition, asymmetry, and contents
-
Richmond D.L., et al. Forming giant vesicles with controlled membrane composition, asymmetry, and contents. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:9431-9436.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 9431-9436
-
-
Richmond, D.L.1
-
63
-
-
67650556174
-
Inkjet formation of unilamellar lipid vesicles for cell-like encapsulation
-
Stachowiak J.C., et al. Inkjet formation of unilamellar lipid vesicles for cell-like encapsulation. Lab Chip 2009, 9:2003-2009.
-
(2009)
Lab Chip
, vol.9
, pp. 2003-2009
-
-
Stachowiak, J.C.1
-
64
-
-
80052724799
-
Transformation of actoHMM assembly confined in cell-sized liposome
-
Takiguchi K., et al. Transformation of actoHMM assembly confined in cell-sized liposome. Langmuir 2011, 27:11528-11535.
-
(2011)
Langmuir
, vol.27
, pp. 11528-11535
-
-
Takiguchi, K.1
-
65
-
-
84866551286
-
Geometry sensing by self-organized protein patterns
-
Schweizer J., Schwille P. Geometry sensing by self-organized protein patterns. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:15283-15288.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 15283-15288
-
-
Schweizer, J.1
Schwille, P.2
-
66
-
-
77953349206
-
Cooperation between giant DNA molecules and actin filaments in a microsphere
-
Negishi M., et al. Cooperation between giant DNA molecules and actin filaments in a microsphere. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2010, 81:051921.
-
(2010)
Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
, vol.81
, pp. 051921
-
-
Negishi, M.1
-
67
-
-
17844409041
-
Dynamic microcompartmentation in synthetic cells
-
Long M.S., et al. Dynamic microcompartmentation in synthetic cells. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:5920-5925.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 5920-5925
-
-
Long, M.S.1
-
68
-
-
41049090929
-
Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences
-
Zhou H.X., et al. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 2008, 37:375-397.
-
(2008)
Annu. Rev. Biophys.
, vol.37
, pp. 375-397
-
-
Zhou, H.X.1
-
69
-
-
84856457757
-
Polymersomes in "gelly" polymersomes: toward structural cell mimicry
-
Marguet M., et al. Polymersomes in "gelly" polymersomes: toward structural cell mimicry. Langmuir 2012, 28:2035-2043.
-
(2012)
Langmuir
, vol.28
, pp. 2035-2043
-
-
Marguet, M.1
-
70
-
-
60149089263
-
Life without a wall or division machine in Bacillus subtilis
-
Leaver M., et al. Life without a wall or division machine in Bacillus subtilis. Nature 2009, 457:849-853.
-
(2009)
Nature
, vol.457
, pp. 849-853
-
-
Leaver, M.1
-
71
-
-
48449103699
-
Protein-membrane interaction probed by single plasmonic nanoparticles
-
Baciu C.L., et al. Protein-membrane interaction probed by single plasmonic nanoparticles. Nano Lett. 2008, 8:1724-1728.
-
(2008)
Nano Lett.
, vol.8
, pp. 1724-1728
-
-
Baciu, C.L.1
-
72
-
-
84856951611
-
Single unlabeled protein detection on individual plasmonic nanoparticles
-
Ament I., et al. Single unlabeled protein detection on individual plasmonic nanoparticles. Nano Lett. 2012, 12:1092-1095.
-
(2012)
Nano Lett.
, vol.12
, pp. 1092-1095
-
-
Ament, I.1
-
73
-
-
65549091378
-
The minimal size of liposome-based model cells brings about a remarkably enhanced entrapment and protein synthesis
-
Pereira de Souza T., et al. The minimal size of liposome-based model cells brings about a remarkably enhanced entrapment and protein synthesis. Chembiochem 2009, 10:1056-1063.
-
(2009)
Chembiochem
, vol.10
, pp. 1056-1063
-
-
Pereira de Souza, T.1
-
74
-
-
84859579073
-
Assembly of MreB filaments on liposome membranes: a synthetic biology approach
-
Maeda Y., et al. Assembly of MreB filaments on liposome membranes: a synthetic biology approach. ACS Synth. Biol. 2012, 1:53-59.
-
(2012)
ACS Synth. Biol.
, vol.1
, pp. 53-59
-
-
Maeda, Y.1
-
75
-
-
79952775158
-
Development of an artificial cell, from self-organization to computation and self-reproduction
-
Noireaux V., et al. Development of an artificial cell, from self-organization to computation and self-reproduction. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:3473-3480.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 3473-3480
-
-
Noireaux, V.1
-
76
-
-
36248938686
-
The structure of FtsZ filaments in vivo suggests a force-generating role in cell division
-
Li Z., et al. The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J. 2007, 26:4694-4708.
-
(2007)
EMBO J.
, vol.26
, pp. 4694-4708
-
-
Li, Z.1
-
77
-
-
80052505864
-
A grand challenge in biology
-
Alberts B. A grand challenge in biology. Science 2011, 333:1200.
-
(2011)
Science
, vol.333
, pp. 1200
-
-
Alberts, B.1
-
78
-
-
0035807879
-
Pattern formation in Escherichia coli: a model for the pole-to-pole oscillations of Min proteins and the localization of the division site
-
Meinhardt H., de Boer P.A. Pattern formation in Escherichia coli: a model for the pole-to-pole oscillations of Min proteins and the localization of the division site. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:14202-14207.
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 14202-14207
-
-
Meinhardt, H.1
de Boer, P.A.2
-
79
-
-
15744398051
-
Role of membrane lipids in bacterial division-site selection
-
Mileykovskaya E., Dowhan W. Role of membrane lipids in bacterial division-site selection. Curr. Opin. Microbiol. 2005, 8:135-142.
-
(2005)
Curr. Opin. Microbiol.
, vol.8
, pp. 135-142
-
-
Mileykovskaya, E.1
Dowhan, W.2
-
80
-
-
33751395400
-
A curvature-mediated mechanism for localization of lipids to bacterial poles
-
Huang K.C., et al. A curvature-mediated mechanism for localization of lipids to bacterial poles. PLoS Comput. Biol. 2006, 2:e151.
-
(2006)
PLoS Comput. Biol.
, vol.2
-
-
Huang, K.C.1
-
81
-
-
1542358154
-
A hypothesis to explain division site selection in Escherichia coli by combining nucleoid occlusion and Min
-
Norris V., et al. A hypothesis to explain division site selection in Escherichia coli by combining nucleoid occlusion and Min. FEBS Lett. 2004, 561:3-10.
-
(2004)
FEBS Lett.
, vol.561
, pp. 3-10
-
-
Norris, V.1
-
82
-
-
84861679512
-
Crucial role for membrane fluidity in proliferation of primitive cells
-
Mercier R., et al. Crucial role for membrane fluidity in proliferation of primitive cells. Cell Rep. 2012, 1:417-423.
-
(2012)
Cell Rep.
, vol.1
, pp. 417-423
-
-
Mercier, R.1
-
83
-
-
71649100145
-
Lipid domains and mechanical plasticity of Escherichia coli lipid monolayers
-
Lopez-Montero I., et al. Lipid domains and mechanical plasticity of Escherichia coli lipid monolayers. Chem. Phys. Lipids 2010, 163:56-63.
-
(2010)
Chem. Phys. Lipids
, vol.163
, pp. 56-63
-
-
Lopez-Montero, I.1
-
84
-
-
84858165547
-
Active membrane viscoelasticity by the bacterial FtsZ-division protein
-
Lopez-Montero I., et al. Active membrane viscoelasticity by the bacterial FtsZ-division protein. Langmuir 2012, 28:4744-4753.
-
(2012)
Langmuir
, vol.28
, pp. 4744-4753
-
-
Lopez-Montero, I.1
-
85
-
-
33749125215
-
Biophysical properties of lipids and dynamic membranes
-
Janmey P.A., Kinnunen P.K. Biophysical properties of lipids and dynamic membranes. Trends Cell Biol. 2006, 16:538-546.
-
(2006)
Trends Cell Biol.
, vol.16
, pp. 538-546
-
-
Janmey, P.A.1
Kinnunen, P.K.2
-
86
-
-
0033956407
-
Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange
-
Mileykovskaya E., Dowhan W. Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J. Bacteriol. 2000, 182:1172-1175.
-
(2000)
J. Bacteriol.
, vol.182
, pp. 1172-1175
-
-
Mileykovskaya, E.1
Dowhan, W.2
-
87
-
-
54049136408
-
Mutual effects of MinD-membrane interaction: I. Changes in the membrane properties induced by MinD binding
-
Mazor S., et al. Mutual effects of MinD-membrane interaction: I. Changes in the membrane properties induced by MinD binding. Biochim. Biophys. Acta 2008, 1778:2496-2504.
-
(2008)
Biochim. Biophys. Acta
, vol.1778
, pp. 2496-2504
-
-
Mazor, S.1
-
88
-
-
77955449195
-
Membrane potential is important for bacterial cell division
-
Strahl H., Hamoen L.W. Membrane potential is important for bacterial cell division. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:12281-12286.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 12281-12286
-
-
Strahl, H.1
Hamoen, L.W.2
-
89
-
-
0022424027
-
Specificity of lipid-protein interactions as determined by spectroscopic techniques
-
Devaux P.F., Seigneuret M. Specificity of lipid-protein interactions as determined by spectroscopic techniques. Biochim. Biophys. Acta 1985, 822:63-125.
-
(1985)
Biochim. Biophys. Acta
, vol.822
, pp. 63-125
-
-
Devaux, P.F.1
Seigneuret, M.2
-
90
-
-
0038191051
-
Concentration and assembly of the division ring proteins FtsZ, ftsA*, and ZipA during the Escherichia coli cell cycle
-
Rueda S., et al. Concentration and assembly of the division ring proteins FtsZ, ftsA*, and ZipA during the Escherichia coli cell cycle. J. Bacteriol. 2003, 185:3344-3351.
-
(2003)
J. Bacteriol.
, vol.185
, pp. 3344-3351
-
-
Rueda, S.1
-
91
-
-
0032759784
-
The straight and curved conformation of FtsZ protofilaments-evidence for rapid exchange of GTP into the curved protofilament
-
Lu C., Erickson H.P. The straight and curved conformation of FtsZ protofilaments-evidence for rapid exchange of GTP into the curved protofilament. Cell Struct. Funct. 1999, 24:285-290.
-
(1999)
Cell Struct. Funct.
, vol.24
, pp. 285-290
-
-
Lu, C.1
Erickson, H.P.2
-
92
-
-
0036229552
-
ZipA is required for recruitment of FtsK, FtsQ, FtsL, and FtsN to the septal ring in Escherichia coli
-
Hale C.A., de Boer P.A. ZipA is required for recruitment of FtsK, FtsQ, FtsL, and FtsN to the septal ring in Escherichia coli. J. Bacteriol. 2002, 184:2552-2556.
-
(2002)
J. Bacteriol.
, vol.184
, pp. 2552-2556
-
-
Hale, C.A.1
de Boer, P.A.2
-
93
-
-
0036791675
-
A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ
-
Gueiros-Filho F.J., Losick R. A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. Genes Dev. 2002, 16:2544-2556.
-
(2002)
Genes Dev.
, vol.16
, pp. 2544-2556
-
-
Gueiros-Filho, F.J.1
Losick, R.2
-
94
-
-
0242584670
-
Essential cell division protein FtsZ assembles into one monomer-thick ribbons under conditions resembling the crowded intracellular environment
-
Gonzalez J.M., et al. Essential cell division protein FtsZ assembles into one monomer-thick ribbons under conditions resembling the crowded intracellular environment. J. Biol. Chem. 2003, 278:37664-37671.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 37664-37671
-
-
Gonzalez, J.M.1
-
95
-
-
0026344818
-
Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli
-
Zimmerman S.B., Trach S.O. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J. Mol. Biol. 1991, 222:599-620.
-
(1991)
J. Mol. Biol.
, vol.222
, pp. 599-620
-
-
Zimmerman, S.B.1
Trach, S.O.2
-
96
-
-
0032079008
-
Biophysical compensation mechanisms buffering E. coli protein-nucleic acid interactions against changing environments
-
Record M.T., et al. Biophysical compensation mechanisms buffering E. coli protein-nucleic acid interactions against changing environments. Trends Biochem. Sci. 1998, 23:190-194.
-
(1998)
Trends Biochem. Sci.
, vol.23
, pp. 190-194
-
-
Record, M.T.1
-
97
-
-
79251640891
-
An inventory of the bacterial macromolecular components and their spatial organization
-
Vendeville A., et al. An inventory of the bacterial macromolecular components and their spatial organization. FEMS Microbiol. Rev. 2011, 35:395-414.
-
(2011)
FEMS Microbiol. Rev.
, vol.35
, pp. 395-414
-
-
Vendeville, A.1
-
98
-
-
1242321063
-
Life in a crowded world
-
Rivas G., et al. Life in a crowded world. EMBO Rep. 2004, 5:23-27.
-
(2004)
EMBO Rep.
, vol.5
, pp. 23-27
-
-
Rivas, G.1
-
99
-
-
0028940740
-
Phase separation, due to macromolecular crowding, is the basis for microcompartmentation
-
Walter H., Brooks D.E. Phase separation, due to macromolecular crowding, is the basis for microcompartmentation. FEBS Lett. 1995, 361:135-139.
-
(1995)
FEBS Lett.
, vol.361
, pp. 135-139
-
-
Walter, H.1
Brooks, D.E.2
|