-
1
-
-
77951624674
-
Channel coding rate in the finite blocklength regime
-
May
-
Y. Polyanskiy, H. V. Poor, and S. Verdú, "Channel coding rate in the finite blocklength regime," IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307-2359, May 2010.
-
(2010)
IEEE Trans. Inf. Theory
, vol.56
, Issue.5
, pp. 2307-2359
-
-
Polyanskiy, Y.1
Poor, H.V.2
Verdú, S.3
-
2
-
-
77953506832
-
Improving zeroerror classical communication with entanglement
-
T. S. Cubitt, D. Leung,W.Matthews, and A.Winter, "Improving zeroerror classical communication with entanglement," Phys. Rev. Lett., vol. 104, no. 23, pp. 230503-1-230503-4, Jun. 2010.
-
Phys. Rev. Lett
, vol.104
, Issue.23
, pp. 230503-230501
-
-
Cubitt, T.S.1
Leung, D.2
Matthews, W.3
Winter, A.4
-
3
-
-
79961006837
-
Zero-error channel capacity and simulation assisted by non-local correlations
-
Aug
-
T. S. Cubitt, D. Leung, W. Matthews, and A. Winter, "Zero-error channel capacity and simulation assisted by non-local correlations," IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 5509-5523, Aug. 2011.
-
(2011)
IEEE Trans. Inf. Theory
, vol.57
, Issue.8
, pp. 5509-5523
-
-
Cubitt, T.S.1
Leung, D.2
Matthews, W.3
Winter, A.4
-
4
-
-
77955104312
-
Entanglement-Assisted zero-error capacity is upper-bounded by the lovász function
-
S. Beigi, "Entanglement-Assisted zero-error capacity is upper-bounded by the Lovász function," Phys. Rev. A, vol. 82, no. 1, pp. 010303-1-010303-4, Jul. 2010.
-
Phys. Rev. A
, vol.82
, Issue.1
, pp. 010303-010301
-
-
Beigi, S.1
-
6
-
-
84858000874
-
Entanglement can increase asymptotic rates of zero-error classical communication over classical channels
-
D. Leung, L. Mancinska, W. Matthews, M. Ozols, and A. Roy, "Entanglement can increase asymptotic rates of zero-error classical communication over classical channels," Commun. Math. Phys., vol. 311, no. 1, pp. 97-111, 2012.
-
(2012)
Commun. Math. Phys
, vol.311
, Issue.1
, pp. 97-111
-
-
Leung, D.1
Mancinska, L.2
Matthews, W.3
Ozols, M.4
Roy, A.5
-
7
-
-
0028461972
-
Ageneral formula for channel capacity
-
Jul
-
S. Verdú andT.S.Han, "Ageneral formula for channel capacity," IEEE Trans. Inf. Theory, vol. 40, no. 4, pp. 1147-1157, Jul. 1994.
-
(1994)
IEEE Trans. Inf. Theory
, vol.40
, Issue.4
, pp. 1147-1157
-
-
Verdú, S.1
Han, T.S.2
-
8
-
-
52349101372
-
Asymptotische abschätzungen in shannons informationstheorie
-
V. Strassen, "Asymptotische abschätzungen in Shannons informationstheorie," in Proc. Trans. Third Prague Conf. Inf. Theory, 1962, pp. 689-723.
-
(1962)
Proc. Trans. Third Prague Conf. Inf. Theory
, pp. 689-723
-
-
Strassen, V.1
-
9
-
-
21244466146
-
Zur theorie der gesellschaftsspiele
-
J. von Neumann, "Zur theorie der gesellschaftsspiele," Mathematische Annalen, vol. 100, no. 1, pp. 295-320, 1928.
-
(1928)
Mathematische Annalen
, vol.100
, Issue.1
, pp. 295-320
-
-
Von Neumann, J.1
-
11
-
-
0000261286
-
Programming with linear fractional functionals
-
A. Charnes and W. W. Cooper, "Programming with linear fractional functionals," Naval Res. Logist. Quart., vol. 9, no. 3-4, pp. 181-186, 1962.
-
(1962)
Naval Res. Logist. Quart
, vol.9
, Issue.3-4
, pp. 181-186
-
-
Charnes, A.1
Cooper, W.W.2
-
13
-
-
0032183789
-
The method of types [information theory]
-
Oct
-
I. Csiszar, "The method of types [information theory]," IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2505-2523, Oct. 1998.
-
(1998)
IEEE Trans. Inf. Theory
, vol.44
, Issue.6
, pp. 2505-2523
-
-
Csiszar, I.1
-
14
-
-
84856043672
-
A mathematical theory of communication
-
Oct
-
C. E. Shannon, "A mathematical theory of communication," Bell Syst. Tech. J., vol. 27, pp. 379-423, Oct. 1948.
-
(1948)
Bell Syst. Tech. J
, vol.27
, pp. 379-423
-
-
Shannon, C.E.1
|