-
1
-
-
84938009281
-
The zero-error capacity of a noisy channel
-
C. E. Shannon, "The zero-error capacity of a noisy channel," IRE Trans. Inf. Theory, vol. IT-2, no. 3, pp. 8-19, 1956.
-
(1956)
IRE Trans. Inf. Theory
, vol.IT-2
, Issue.3
, pp. 8-19
-
-
Shannon, C.E.1
-
2
-
-
84856043672
-
A mathematical theory of communication
-
623 656
-
C. E. Shannon, "A mathematical theory of communication," Bell Syst. Tech. J., vol. 27, pp. 379-423, 623-656, 1948.
-
(1948)
Bell Syst. Tech. J.
, vol.27
, pp. 379-423
-
-
Shannon, C.E.1
-
3
-
-
33344463414
-
Nonlocal correlations as an information-theoretic resource
-
J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, and D. Roberts, "Nonlocal correlations as an information-theoretic resource," Phys. Rev. A, vol. 71, no. 2, p. 022101, 2005.
-
(2005)
Phys. Rev. A
, vol.71
, Issue.2
, pp. 022101
-
-
Barrett, J.1
Linden, N.2
Massar, S.3
Pironio, S.4
Popescu, S.5
Roberts, D.6
-
4
-
-
0036795510
-
Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem
-
DOI 10.1109/TIT.2002.802612, PII 1011092002802612
-
C. H. Bennett, P. Shor, J. Smolin, and A. V. Thapliyal, "Entanglement- assisted capacity of a quantum channel and the reverse Shannon theorem," IEEE Trans. Inf. Theory, vol. 48, no. 10, pp. 2637-2655, Oct. 2002. (Pubitemid 35170324)
-
(2002)
IEEE Transactions on Information Theory
, vol.48
, Issue.10
, pp. 2637-2655
-
-
Bennett, C.H.1
Shor, P.W.2
Smolin, J.A.3
Thapliyal, A.V.4
-
5
-
-
10644267252
-
-
Theorem arXiv: 0912.5537
-
C. H. Bennett, I. Devetak, A. W. Harrow, P. W. Shor, and A. Winter, Quantum Reverse Shannon Theorem arXiv:0912.5537, 2009.
-
(2009)
Quantum Reverse Shannon
-
-
Bennett, C.H.1
Devetak, I.2
Harrow, A.W.3
Shor, P.W.4
Winter, A.5
-
11
-
-
0013515394
-
On some problems of Lovász concerning the Shannon capacity of a graph
-
W. Haemers, "On some problems of Lovász concerning the Shannon capacity of a graph," IEEE Trans. Inf. Theory, vol. IT-25, no. 2, pp. 231-232, 1979.
-
(1979)
IEEE Trans. Inf. Theory
, vol.IT-25
, Issue.2
, pp. 231-232
-
-
Haemers, W.1
-
12
-
-
80054804486
-
-
arXiv:1009.1195
-
D. Leung, L. Mancinska, W. Matthews, M. Ozols, and A. Roy, Entanglement Can Increase Asymptotic Rates of Zero-Error Classical Communication Over Classical Channels arXiv:1009.1195.
-
Entanglement Can Increase Asymptotic Rates of Zero-Error Classical Communication Over Classical Channels
-
-
Leung, D.1
Mancinska, L.2
Matthews, W.3
Ozols, M.4
Roy, A.5
-
13
-
-
9244259543
-
Nonnegative ranks, decompositions, and factorizations of nonnegative matrices
-
J. E. Cohen and U. G. Rothblum, "Nonnegative ranks, decompositions, and factorizations of nonnegative matrices," Linear Alg. and Its Applic., vol. 190, p. 1, 1993.
-
(1993)
Linear Alg. and Its Applic.
, vol.190
, pp. 1
-
-
Cohen, J.E.1
Rothblum, U.G.2
-
14
-
-
0003084082
-
The problem of hidden variables in quantum mechanics
-
S. Kochen and E. P. Specker, "The problem of hidden variables in quantum mechanics," J. Mathemat. and Mechan., vol. 17, pp. 59-87, 1967.
-
(1967)
J. Mathemat. and Mechan.
, vol.17
, pp. 59-87
-
-
Kochen, S.1
Specker, E.P.2
-
15
-
-
0000312409
-
Bell-Kochen- Specker theorem: An proof with 18 vectors
-
A. Cabello, J. M. Estebaranz, and G. G. Alcaine, "Bell-Kochen- Specker theorem: An proof with 18 vectors," Phys. Lett. A, vol. 212, p. 183, 1986.
-
(1986)
Phys. Lett. A
, vol.212
, pp. 183
-
-
Cabello, A.1
Estebaranz, J.M.2
Alcaine, G.G.3
-
16
-
-
36149028438
-
Two simple proofs of theKochen-Specker theorem
-
A. Peres, "Two simple proofs of theKochen-Specker theorem," J. Phys. A: Mathemat. and Gen., vol. 24, no. 4, pp. L175-L178, 1991.
-
(1991)
J. Phys. A: Mathemat. and Gen.
, vol.24
, Issue.4
-
-
Peres, A.1
-
17
-
-
77953506832
-
Improving zeroerror classical communication with entanglement
-
arXiv:0911.5300
-
T. S. Cubitt, D. Leung, W. Matthews, and A.Winter, "Improving zeroerror classical communication with entanglement," Phys. Rev. Lett., vol. 104, p. 230503, 2010, arXiv:0911.5300.
-
(2010)
Phys. Rev. Lett.
, vol.104
, pp. 230503
-
-
Cubitt, T.S.1
Leung, D.2
Matthews, W.3
Winter, A.4
-
20
-
-
0032182852
-
Zero-error information theory
-
PII S0018944898060842
-
J. Körner and A. Orlitsky, "Zero-error information theory," IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2207-2229, Jun. 1998. (Pubitemid 128741889)
-
(1998)
IEEE Transactions on Information Theory
, vol.44
, Issue.6
, pp. 2207-2229
-
-
Korner, J.1
Orlitsky, A.2
-
21
-
-
0018292109
-
On the Shannon capacity of a graph
-
L. Lovász, "On the Shannon capacity of a graph," IEEE Trans. Inf. Theory, vol. IT-25, no. 1, pp. 1-7, 1979.
-
(1979)
IEEE Trans. Inf. Theory
, vol.IT-25
, Issue.1
, pp. 1-7
-
-
Lovász, L.1
-
22
-
-
21344488159
-
Quantum nonlocality as an axiom
-
S. Popescu and D. Rohrlich, "Quantum nonlocality as an axiom," Found. Phys., vol. 24, pp. 379-385, 1994.
-
(1994)
Found. Phys.
, vol.24
, pp. 379-385
-
-
Popescu, S.1
Rohrlich, D.2
-
23
-
-
0013476852
-
An upper bound for the Shannon capacity of a graph
-
W. Haemers, "An upper bound for the Shannon capacity of a graph," Coll. Math. Soc. János Bolyai, vol. 25, pp. 267-272, 1978.
-
(1978)
Coll. Math. Soc. János Bolyai
, vol.25
, pp. 267-272
-
-
Haemers, W.1
|