메뉴 건너뛰기




Volumn 13, Issue 1, 2012, Pages

An assessment on epitope prediction methods for protozoa genomes

Author keywords

[No Author keywords available]

Indexed keywords

B CELLS; BETTER PERFORMANCE; BUILT-IN FUNCTIONS; CONFUSION MATRICES; EPITOPE PREDICTIONS; ETIOLOGIC AGENTS; EVALUATING ALGORITHMS; EXPERIMENTAL DATUM; IN-SILICO; KEYPOINTS; LARGE DATASETS; LEISHMANIA; MYSQL DATABASE; PARSING ALGORITHM; PREDICTION PERFORMANCE; PREDICTIVE PERFORMANCE; PROTOZOAN PARASITES; REVERSE VACCINOLOGY; SUBCELLULAR LOCALIZATIONS; T-CELL EPITOPES; VACCINE DEVELOPMENT;

EID: 84869233624     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-13-309     Document Type: Article
Times cited : (25)

References (45)
  • 1
    • 61649121489 scopus 로고    scopus 로고
    • The use of genomics in microbial vaccine development
    • Bambini S, Rappuoli R. The use of genomics in microbial vaccine development. Drug DiscovToday 2009, 14(5-6):252-260.
    • (2009) Drug DiscovToday , vol.14 , Issue.5-6 , pp. 252-260
    • Bambini, S.1    Rappuoli, R.2
  • 3
  • 4
    • 0025211412 scopus 로고
    • Overview of a 5-year clinical experience with a yeast-derived hepatitis B vaccine
    • Andre FE. Overview of a 5-year clinical experience with a yeast-derived hepatitis B vaccine. Vaccine 1990, 8(Suppl):S74-S78.
    • (1990) Vaccine , vol.8 , Issue.SUPPL
    • Andre, F.E.1
  • 7
    • 0035852328 scopus 로고    scopus 로고
    • Prediction of organellar targeting signals
    • Emanuelsson O, von Heijne G. Prediction of organellar targeting signals. BiochimBiophysActa 2001, 1541(1-2):114-119.
    • (2001) BiochimBiophysActa , vol.1541 , Issue.1-2 , pp. 114-119
    • Emanuelsson, O.1    von Heijne, G.2
  • 8
    • 0036459850 scopus 로고    scopus 로고
    • An overview on predicting the subcellular location of a protein
    • Feng ZP. An overview on predicting the subcellular location of a protein. In SilicoBiol 2002, 2(3):291-303.
    • (2002) In SilicoBiol , vol.2 , Issue.3 , pp. 291-303
    • Feng, Z.P.1
  • 9
    • 0036187913 scopus 로고    scopus 로고
    • Extensive feature detection of N-terminal protein sorting signals
    • 10.1093/bioinformatics/18.2.298, 11847077
    • Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S. Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 2002, 18(2):298-305. 10.1093/bioinformatics/18.2.298, 11847077.
    • (2002) Bioinformatics , vol.18 , Issue.2 , pp. 298-305
    • Bannai, H.1    Tamada, Y.2    Maruyama, O.3    Nakai, K.4    Miyano, S.5
  • 10
    • 0031588694 scopus 로고    scopus 로고
    • Relation between amino acid composition and cellular location of proteins
    • Cedano J, Aloy P, Perez-Pons JA, Querol E. Relation between amino acid composition and cellular location of proteins. JMolBiol 1997, 266(3):594-600.
    • (1997) JMolBiol , vol.266 , Issue.3 , pp. 594-600
    • Cedano, J.1    Aloy, P.2    Perez-Pons, J.A.3    Querol, E.4
  • 11
    • 0034697980 scopus 로고    scopus 로고
    • Predicting subcellular localization of proteins based on their N-terminal amino acid sequence
    • Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. JMolBiol 2000, 300(4):1005-1016.
    • (2000) JMolBiol , vol.300 , Issue.4 , pp. 1005-1016
    • Emanuelsson, O.1    Nielsen, H.2    Brunak, S.3    von Heijne, G.4
  • 12
    • 0034843744 scopus 로고    scopus 로고
    • Support vector machine approach for protein subcellular localization prediction
    • 10.1093/bioinformatics/17.8.721, 11524373
    • Hua S, Sun Z. Support vector machine approach for protein subcellular localization prediction. Bioinformatics 2001, 17(8):721-728. 10.1093/bioinformatics/17.8.721, 11524373.
    • (2001) Bioinformatics , vol.17 , Issue.8 , pp. 721-728
    • Hua, S.1    Sun, Z.2
  • 13
    • 0028468031 scopus 로고
    • How delays affect neural dynamics and learning
    • Baldi P, Atiya AF. How delays affect neural dynamics and learning. IEEE TransNeural Netw 1994, 5(4):612-621.
    • (1994) IEEE TransNeural Netw , vol.5 , Issue.4 , pp. 612-621
    • Baldi, P.1    Atiya, A.F.2
  • 14
    • 0029887381 scopus 로고    scopus 로고
    • Hidden Markov models for sequence analysis: extension and analysis of the basic method
    • Hughey R, Krogh A. Hidden Markov models for sequence analysis: extension and analysis of the basic method. ComputApplBiosci 1996, 12(2):95-107.
    • (1996) ComputApplBiosci , vol.12 , Issue.2 , pp. 95-107
    • Hughey, R.1    Krogh, A.2
  • 15
    • 68149165759 scopus 로고    scopus 로고
    • A new learning paradigm: learning using privileged information
    • Vapnik V, Vashist A. A new learning paradigm: learning using privileged information. Neural Netw 2009, 22(5-6):544-557.
    • (2009) Neural Netw , vol.22 , Issue.5-6 , pp. 544-557
    • Vapnik, V.1    Vashist, A.2
  • 16
    • 36949034073 scopus 로고    scopus 로고
    • Modeling the adaptive immune system: predictions and simulations
    • 10.1093/bioinformatics/btm471, 18045832
    • Lundegaard C, Lund O, Kesmir C, Brunak S, Nielsen M. Modeling the adaptive immune system: predictions and simulations. Bioinformatics 2007, 23(24):3265-3275. 10.1093/bioinformatics/btm471, 18045832.
    • (2007) Bioinformatics , vol.23 , Issue.24 , pp. 3265-3275
    • Lundegaard, C.1    Lund, O.2    Kesmir, C.3    Brunak, S.4    Nielsen, M.5
  • 17
    • 0032387825 scopus 로고    scopus 로고
    • Predicting peptides that bind to MHC molecules using supervised learning of hidden Markov models
    • 10.1002/(SICI)1097-0134(19981201)33:4<460::AID-PROT2>3.0.CO;2-M, 9849933
    • Mamitsuka H. Predicting peptides that bind to MHC molecules using supervised learning of hidden Markov models. Proteins 1998, 33(4):460-474. 10.1002/(SICI)1097-0134(19981201)33:4<460::AID-PROT2>3.0.CO;2-M, 9849933.
    • (1998) Proteins , vol.33 , Issue.4 , pp. 460-474
    • Mamitsuka, H.1
  • 21
    • 0035223982 scopus 로고    scopus 로고
    • The NCBI Data Model. In: Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins
    • New York: John Wiley & Sons Publishing, Baxevanis AD, Ouellette BFF, 2
    • Ostell JM, Wheelan SJ, Kans JA. The NCBI Data Model. In: Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. 2001, 19-44. New York: John Wiley & Sons Publishing, Baxevanis AD, Ouellette BFF, 2.
    • (2001) , pp. 19-44
    • Ostell, J.M.1    Wheelan, S.J.2    Kans, J.A.3
  • 23
    • 2442499729 scopus 로고    scopus 로고
    • Improved prediction of MHC class I and class II epitopes using a novel gibbs sampling approach
    • 10.1093/bioinformatics/bth100, 14962912
    • Nielsen M, Lundegaard C, Worning P, Hvid CS, Lamberth K, Buus S, Brunak S, Lund O. Improved prediction of MHC class I and class II epitopes using a novel gibbs sampling approach. Bioinformatics 2004, 20(9):1388-1397. 10.1093/bioinformatics/bth100, 14962912.
    • (2004) Bioinformatics , vol.20 , Issue.9 , pp. 1388-1397
    • Nielsen, M.1    Lundegaard, C.2    Worning, P.3    Hvid, C.S.4    Lamberth, K.5    Buus, S.6    Brunak, S.7    Lund, O.8
  • 24
    • 33751104704 scopus 로고    scopus 로고
    • Improved method for predicting linear B-cell epitopes
    • Larsen JE, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes. ImmunomeRes 2006, 2:2.
    • (2006) ImmunomeRes , vol.2 , pp. 2
    • Larsen, J.E.1    Lund, O.2    Nielsen, M.3
  • 25
    • 47649130438 scopus 로고    scopus 로고
    • Predicting linear B-cell epitopes using string kernels
    • El Manzalawy Y, Dobbs D, Honavar V. Predicting linear B-cell epitopes using string kernels. JMolRecognit 2008, 21(4):243-255.
    • (2008) JMolRecognit , vol.21 , Issue.4 , pp. 243-255
    • El Manzalawy, Y.1    Dobbs, D.2    Honavar, V.3
  • 26
    • 34548301416 scopus 로고    scopus 로고
    • Prediction of linear B-cell epitopes using amino acid pair antigenicity scale
    • Chen J, Liu H, Yang J, Chou KC. Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. AminoAcids 2007, 33(3):423-428.
    • (2007) AminoAcids , vol.33 , Issue.3 , pp. 423-428
    • Chen, J.1    Liu, H.2    Yang, J.3    Chou, K.C.4
  • 28
    • 0023046815 scopus 로고
    • A new method for predicting signal sequence cleavage sites
    • 10.1093/nar/14.11.4683, 311474, 3714490
    • von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 1986, 14(11):4683-4690. 10.1093/nar/14.11.4683, 311474, 3714490.
    • (1986) Nucleic Acids Res , vol.14 , Issue.11 , pp. 4683-4690
    • von Heijne, G.1
  • 30
    • 70449359806 scopus 로고    scopus 로고
    • NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction
    • Nielsen M, Lund O. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinforma 2009, 10:296.
    • (2009) BMC Bioinforma , vol.10 , pp. 296
    • Nielsen, M.1    Lund, O.2
  • 31
    • 0037407113 scopus 로고    scopus 로고
    • Reliable prediction of T-cell epitopes using neural networks with novel sequence representations
    • 10.1110/ps.0239403, 2323871, 12717023
    • Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, Brunak S, Lund O. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 2003, 12(5):1007-1017. 10.1110/ps.0239403, 2323871, 12717023.
    • (2003) Protein Sci , vol.12 , Issue.5 , pp. 1007-1017
    • Nielsen, M.1    Lundegaard, C.2    Worning, P.3    Lauemoller, S.L.4    Lamberth, K.5    Buus, S.6    Brunak, S.7    Lund, O.8
  • 32
    • 0041589474 scopus 로고    scopus 로고
    • Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors
    • Peters B, Bulik S, Tampe R, Van Endert PM, Holzhutter HG. Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. JImmunol 2003, 171(4):1741-1749.
    • (2003) JImmunol , vol.171 , Issue.4 , pp. 1741-1749
    • Peters, B.1    Bulik, S.2    Tampe, R.3    Van Endert, P.M.4    Holzhutter, H.G.5
  • 35
    • 33947265265 scopus 로고    scopus 로고
    • CTL epitopes for influenza A including the H5N1 bird flu; genome-, pathogen-, and HLA-wide screening
    • 10.1016/j.vaccine.2006.12.038, 17254671
    • Wang M, Lamberth K, Harndahl M, Roder G, Stryhn A, Larsen MV, Nielsen M, Lundegaard C, Tang ST, Dziegiel MH, et al. CTL epitopes for influenza A including the H5N1 bird flu; genome-, pathogen-, and HLA-wide screening. Vaccine 2007, 25(15):2823-2831. 10.1016/j.vaccine.2006.12.038, 17254671.
    • (2007) Vaccine , vol.25 , Issue.15 , pp. 2823-2831
    • Wang, M.1    Lamberth, K.2    Harndahl, M.3    Roder, G.4    Stryhn, A.5    Larsen, M.V.6    Nielsen, M.7    Lundegaard, C.8    Tang, S.T.9    Dziegiel, M.H.10
  • 36
    • 84872378755 scopus 로고    scopus 로고
    • NetCTL
    • NetCTL NetCTL., http://www.cbs.dtu.dk/suppl/immunology/CTL-1.2.php
  • 37
    • 84872395674 scopus 로고    scopus 로고
    • NetCTL SYFPEITHI dataset
    • NetCTL SYFPEITHI dataset NetCTL SYFPEITHI dataset., http://www.cbs.dtu.dk/suppl/immunology/CTL-1.2/syf.data.fsa
  • 38
    • 23844528191 scopus 로고    scopus 로고
    • An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions
    • 10.1002/eji.200425811, 15997466
    • Larsen MV, Lundegaard C, Lamberth K, Buus S, Brunak S, Lund O, Nielsen M. An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur J Immunol 2005, 35(8):2295-2303. 10.1002/eji.200425811, 15997466.
    • (2005) Eur J Immunol , vol.35 , Issue.8 , pp. 2295-2303
    • Larsen, M.V.1    Lundegaard, C.2    Lamberth, K.3    Buus, S.4    Brunak, S.5    Lund, O.6    Nielsen, M.7
  • 39
    • 77956265695 scopus 로고    scopus 로고
    • In vitro and in vivo evaluation of five low molecular weight proteins of ehrlichia ruminantium as potential vaccine components
    • Sebatjane S, Pretorius A, Liebenberg J, Steyn H, Van Kleef M. In vitro and in vivo evaluation of five low molecular weight proteins of ehrlichia ruminantium as potential vaccine components. Vet Immunol Immunopathol 2010, 137(3-4):217-225.
    • (2010) Vet Immunol Immunopathol , vol.137 , Issue.3-4 , pp. 217-225
    • Sebatjane, S.1    Pretorius, A.2    Liebenberg, J.3    Steyn, H.4    Van Kleef, M.5
  • 40
    • 55949118190 scopus 로고    scopus 로고
    • The curation guidelines of the immune epitope database and analysis resource
    • 2597159, 18688821
    • Vita R, Peters B, Sette A. The curation guidelines of the immune epitope database and analysis resource. Cytometry A 2008, 73(11):1066-1070. 2597159, 18688821.
    • (2008) Cytometry A , vol.73 , Issue.11 , pp. 1066-1070
    • Vita, R.1    Peters, B.2    Sette, A.3
  • 43
    • 17844385106 scopus 로고    scopus 로고
    • The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage
    • Nielsen M, Lundegaard C, Lund O, Kesmir C. The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 2005, 57(1-2):33-41.
    • (2005) Immunogenetics , vol.57 , Issue.1-2 , pp. 33-41
    • Nielsen, M.1    Lundegaard, C.2    Lund, O.3    Kesmir, C.4
  • 44
    • 10744222046 scopus 로고    scopus 로고
    • Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach
    • 10.1034/j.1399-0039.2003.00112.x, 14617044
    • Buus S, Lauemoller SL, Worning P, Kesmir C, Frimurer T, Corbet S, Fomsgaard A, Hilden J, Holm A, Brunak S. Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach. Tissue Antigens 2003, 62(5):378-384. 10.1034/j.1399-0039.2003.00112.x, 14617044.
    • (2003) Tissue Antigens , vol.62 , Issue.5 , pp. 378-384
    • Buus, S.1    Lauemoller, S.L.2    Worning, P.3    Kesmir, C.4    Frimurer, T.5    Corbet, S.6    Fomsgaard, A.7    Hilden, J.8    Holm, A.9    Brunak, S.10
  • 45
    • 27544491192 scopus 로고    scopus 로고
    • ROCR: visualizing classifier performance in R
    • 10.1093/bioinformatics/bti623, 16096348
    • Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: visualizing classifier performance in R. Bioinformatics 2005, 21(20):3940-3941. 10.1093/bioinformatics/bti623, 16096348.
    • (2005) Bioinformatics , vol.21 , Issue.20 , pp. 3940-3941
    • Sing, T.1    Sander, O.2    Beerenwinkel, N.3    Lengauer, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.