메뉴 건너뛰기




Volumn 15, Issue 2, 2012, Pages 232-243

Existence and uniqueness results for a fractional evolution equation in hilbert space

Author keywords

Accretive operator; Fractional evolution equation; Kernel of positive type; Maximal regularity; Subdiffusion equation

Indexed keywords


EID: 84869180066     PISSN: 13110454     EISSN: 13142444     Source Type: Journal    
DOI: 10.2478/s13540-012-0017-0     Document Type: Article
Times cited : (26)

References (18)
  • 1
    • 48349133740 scopus 로고    scopus 로고
    • Inhomogeneous fractional diffusion equations
    • at
    • B. Baeumer, S. Kurita, M.M. Meerschaert, Inhomogeneous fractional diffusion equations. Fract. Calc. Appl. Anal. 8, No 4 (2005), 371-386; at http://www.math.bas.bg/fcaa
    • (2005) Fract. Calc. Appl. Anal. , vol.8 , Issue.4 , pp. 371-386
    • Baeumer, B.1    Kurita, S.2    Meerschaert, M.M.3
  • 3
    • 0003282411 scopus 로고
    • Op'erateurs maximaux monotones et semi-groupes de contractions dans les espaces de hilbert
    • North-Holland, Amsterdam
    • H. Brezis, Op'erateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. Math. Studies 5, North-Holland, Amsterdam (1973).
    • (1973) Math. Studies , vol.5
    • Brezis, H.1
  • 5
    • 0037874989 scopus 로고
    • On the closedness of the sum of two closed operators
    • G. Dore, A. Venni, On the closedness of the sum of two closed operators. Math. Z. 196 (1987), 189-201.
    • (1987) Math. Z. , vol.196 , pp. 189-201
    • Dore, G.1    Venni, A.2
  • 7
    • 33745869026 scopus 로고    scopus 로고
    • Physical interpretation of initial conditions for fractional differential equations with riemann-liouville fractional derivatives
    • N. Heymans, I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheologica Acta 45, No 5 (2006), 765-772.
    • (2006) Rheologica Acta , vol.45 , Issue.5 , pp. 765-772
    • Heymans, N.1    Podlubny, I.2
  • 8
    • 0033750757 scopus 로고    scopus 로고
    • Fractional diffusion based on riemann-liouville fractional derivative
    • R. Hilfer, Fractional diffusion based on Riemann-Liouville fractional derivative. J. Phys. Chem. B 104, No 16 (2000), 3914-3917.
    • (2000) J. Phys. Chem. , vol.B 104 , Issue.16 , pp. 3914-3917
    • Hilfer, R.1
  • 10
    • 0040062320 scopus 로고
    • Remarks on pseudo-resolvents and infinitesimal generators of semi-groups
    • T. Kato, Remarks on pseudo-resolvents and infinitesimal generators of semi-groups. Proc. Japan Acad. 35 (1959), 467-468.
    • (1959) Proc. Japan Acad. , vol.35 , pp. 467-468
    • Kato, T.1
  • 12
    • 0007045475 scopus 로고
    • A cauchy problem for evolution equations of fractional order
    • A.N. Kochubei, A Cauchy problem for evolution equations of fractional order. Diff. Equations 25 (1989), 967-974.
    • (1989) Diff. Equations , vol.25 , pp. 967-974
    • Kochubei, A.N.1
  • 13
    • 37449011239 scopus 로고    scopus 로고
    • Distributed order calculus and equations of ultraslow diffusion
    • A.N. Kochubei, Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340, No 1 (2008), 252-281.
    • (2008) J. Math. Anal. Appl. , vol.340 , Issue.1 , pp. 252-281
    • Kochubei, A.N.1
  • 14
    • 84861201332 scopus 로고    scopus 로고
    • Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation
    • DOI: 102478/s13540-141-160 DOI: 102478/s13012
    • Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract. Calc. Appl. Anal. 15, No 1 (2012), 141-160; DOI: 10.2478/s13540-012-0010-7; http://www.springerlink.com/content/ 1311-0454/15/1/
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , Issue.1 , pp. 141-160
    • Luchko, Y.1
  • 15
    • 4043151477 scopus 로고    scopus 로고
    • The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics
    • R. Metzler, J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A. Math. Gen. 37 (2004), R161-R208.
    • (2004) J. Phys. A. Math. Gen. , vol.37
    • Metzler, R.1    Klafter, J.2
  • 17
    • 0242410750 scopus 로고    scopus 로고
    • Behavior of fractional diffusion at the origin
    • Ya.E. Ryabov, Behavior of fractional diffusion at the origin. Physical Review E 68 (2003) 030102(R).
    • (2003) Physical Review E , vol.68 , pp. 030102
    • Ryabov, Ya.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.