메뉴 건너뛰기




Volumn 389, Issue 21, 2010, Pages 4696-4707

Evolution of the initial box-signal for time-fractional diffusionwave equation in a case of different spatial dimensions

Author keywords

Anomalous diffusion; Box signal; Diffusionwave equation; Fractional calculus

Indexed keywords

PHYSICS;

EID: 77956170998     PISSN: 03784371     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.physa.2010.06.049     Document Type: Article
Times cited : (13)

References (43)
  • 2
    • 0028039735 scopus 로고
    • On the wave theory in heat conduction
    • M.N. ziik, and D.Y. Tzou On the wave theory in heat conduction J. Heat Transfer 116 1994 526 535
    • (1994) J. Heat Transfer , vol.116 , pp. 526-535
    • Ziik, M.N.1    Tzou, D.Y.2
  • 4
    • 0032163001 scopus 로고    scopus 로고
    • Mesoscopic diffusion as a non-Markov process
    • S. Godoy, and L.S. Garca-Coln Mesoscopic diffusion as a non-Markov process Physica A 258 1998 414 428
    • (1998) Physica A , vol.258 , pp. 414-428
    • Godoy, S.1    Garca-Coln, L.S.2
  • 5
    • 0002641421 scopus 로고    scopus 로고
    • The random walk's guide to anomalous diffusion: A fractional dynamics approach
    • R. Metzler, and J. Klafter The random walk's guide to anomalous diffusion: a fractional dynamics approach Phys. Rep. 339 2000 1 77
    • (2000) Phys. Rep. , vol.339 , pp. 1-77
    • Metzler, R.1    Klafter, J.2
  • 6
    • 0036887936 scopus 로고    scopus 로고
    • Chaos, fractional kinetics, and anomalous transport
    • G.M. Zaslavsky Chaos, fractional kinetics, and anomalous transport Phys. Rep. 371 2002 461 580
    • (2002) Phys. Rep. , vol.371 , pp. 461-580
    • Zaslavsky, G.M.1
  • 7
    • 4043151477 scopus 로고    scopus 로고
    • The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics
    • R. Metzler, and J. Klafter The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics J. Phys. A: Math. Gen. 37 2004 R161 R208
    • (2004) J. Phys. A: Math. Gen. , vol.37
    • Metzler, R.1    Klafter, J.2
  • 8
    • 34250511985 scopus 로고
    • A general theory of heat conduction with finite wave speeds
    • M.E. Gurtin, and A.C. Pipkin A general theory of heat conduction with finite wave speeds Arch. Ration. Mech. Anal. 31 1968 113 126
    • (1968) Arch. Ration. Mech. Anal. , vol.31 , pp. 113-126
    • Gurtin, M.E.1    Pipkin, A.C.2
  • 9
    • 0021448875 scopus 로고
    • To the theoretical explanation of the "universal response"
    • R.R. Nigmatullin To the theoretical explanation of the "universal response" Phys. Status Solidi (b) 123 1984 739 745
    • (1984) Phys. Status Solidi (B) , vol.123 , pp. 739-745
    • Nigmatullin, R.R.1
  • 10
    • 0021468522 scopus 로고
    • On the theory of relaxation with "remnant" memory
    • R.R. Nigmatullin On the theory of relaxation with "remnant" memory Phys. Status Solidi (b) 124 1984 389 393
    • (1984) Phys. Status Solidi (B) , vol.124 , pp. 389-393
    • Nigmatullin, R.R.1
  • 11
    • 0027607737 scopus 로고
    • Thermoelasticity without energy dissipation
    • A.E. Green, and P.M. Naghdi Thermoelasticity without energy dissipation J. Elasticity 31 1993 189 208
    • (1993) J. Elasticity , vol.31 , pp. 189-208
    • Green, A.E.1    Naghdi, P.M.2
  • 13
    • 84973509052 scopus 로고
    • Thermoelasticity with second sound: A review
    • D.S. Chandrasekharaiah Thermoelasticity with second sound: a review Appl. Mech. Rev. 39 1986 355 376
    • (1986) Appl. Mech. Rev. , vol.39 , pp. 355-376
    • Chandrasekharaiah, D.S.1
  • 14
    • 13844253772 scopus 로고    scopus 로고
    • Fractional heat conduction equation and associated thermal stress
    • Y.Z. Povstenko Fractional heat conduction equation and associated thermal stress J. Thermal Stresses 28 2005 83 102
    • (2005) J. Thermal Stresses , vol.28 , pp. 83-102
    • Povstenko, Y.Z.1
  • 15
    • 77952823001 scopus 로고    scopus 로고
    • Theory of thermoelasticity based on the spacetime-fractional heat conduction equation
    • Y.Z. Povstenko Theory of thermoelasticity based on the spacetime-fractional heat conduction equation Phys. Scr. T 136 2009 014017 (6 p.)
    • (2009) Phys. Scr. T , vol.136
    • Povstenko, Y.Z.1
  • 17
    • 0001983732 scopus 로고    scopus 로고
    • Fractional calculus: Some basic problems in continuum and statistical mechanics
    • F. Mainardi Fractional calculus: some basic problems in continuum and statistical mechanics A. Carpinteri, F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics 1997 Springer Wien 291 348
    • (1997) Fractals and Fractional Calculus in Continuum Mechanics , pp. 291-348
    • Mainardi, F.1
  • 20
    • 33646097441 scopus 로고    scopus 로고
    • Pattern formation in a fractional reactiondiffusion system
    • V.V. Gafiychuk, and B.Yo. Datsko Pattern formation in a fractional reactiondiffusion system Physica A 365 2006 300 306
    • (2006) Physica A , vol.365 , pp. 300-306
    • Gafiychuk, V.V.1    Datsko, B.Yo.2
  • 22
    • 0009481303 scopus 로고
    • The fractional diffusion equation
    • W. Wyss The fractional diffusion equation J. Math. Phys. 27 1986 2782 2785
    • (1986) J. Math. Phys. , vol.27 , pp. 2782-2785
    • Wyss, W.1
  • 23
    • 0001553919 scopus 로고
    • Fractional diffusion and wave equations
    • W.R. Schneider, and W. Wyss Fractional diffusion and wave equations J. Math. Phys. 30 1989 134 144
    • (1989) J. Math. Phys. , vol.30 , pp. 134-144
    • Schneider, W.R.1    Wyss, W.2
  • 24
    • 30244460855 scopus 로고    scopus 로고
    • The fundamental solutions for the fractional diffusionwave equation
    • F. Mainardi The fundamental solutions for the fractional diffusionwave equation Appl. Math. Lett. 9 6 1996 23 28
    • (1996) Appl. Math. Lett. , vol.9 , Issue.6 , pp. 23-28
    • Mainardi, F.1
  • 25
    • 0030464353 scopus 로고    scopus 로고
    • Fractional relaxationoscillation and fractional diffusionwave phenomena
    • F. Mainardi Fractional relaxationoscillation and fractional diffusionwave phenomena Chaos Solitons Fractals 7 1996 1461 1477
    • (1996) Chaos Solitons Fractals , vol.7 , pp. 1461-1477
    • Mainardi, F.1
  • 26
    • 57249098754 scopus 로고    scopus 로고
    • Multidimensional solutions of time-fractional diffusionwave equations
    • A. Hanyga Multidimensional solutions of time-fractional diffusionwave equations Proc. R. Soc. Lond. Ser. A 458 2002 933 957
    • (2002) Proc. R. Soc. Lond. Ser. A , vol.458 , pp. 933-957
    • Hanyga, A.1
  • 27
    • 74449084990 scopus 로고    scopus 로고
    • The variational iteration method which should be followed
    • J.-H. He, G.-C. Wu, and F. Austin The variational iteration method which should be followed Nonlinear Sci. Lett. A 1 2010 1 30
    • (2010) Nonlinear Sci. Lett. A , vol.1 , pp. 1-30
    • He, J.-H.1    Wu, G.-C.2    Austin, F.3
  • 28
    • 77953205877 scopus 로고    scopus 로고
    • The homotopy perturbation method for multi-order time fractional differential equations
    • A. Golbabai, and K. Sayevand The homotopy perturbation method for multi-order time fractional differential equations Nonlinear Sci. Lett. A 1 2010 147 154
    • (2010) Nonlinear Sci. Lett. A , vol.1 , pp. 147-154
    • Golbabai, A.1    Sayevand, K.2
  • 29
    • 77955393855 scopus 로고    scopus 로고
    • The reduced differential transform method: A new approach to fractional partial differential equations
    • Y. Keskin, and G. Oturanc The reduced differential transform method: a new approach to fractional partial differential equations Nonlinear Sci. Lett. A 1 2010 207 217
    • (2010) Nonlinear Sci. Lett. A , vol.1 , pp. 207-217
    • Keskin, Y.1    Oturanc, G.2
  • 30
    • 0033884660 scopus 로고    scopus 로고
    • Boundary value problems for fractional diffusion equations
    • R. Metzler, and J. Klafter Boundary value problems for fractional diffusion equations Physica A 278 2000 107 125
    • (2000) Physica A , vol.278 , pp. 107-125
    • Metzler, R.1    Klafter, J.2
  • 31
    • 0033750757 scopus 로고    scopus 로고
    • Fractional diffusion based on RiemannLiouville fractional derivatives
    • R. Hilfer Fractional diffusion based on RiemannLiouville fractional derivatives J. Phys. Chem. B 104 2000 3914 3917
    • (2000) J. Phys. Chem. B , vol.104 , pp. 3914-3917
    • Hilfer, R.1
  • 33
    • 0036650559 scopus 로고    scopus 로고
    • Solution for a fractional diffusionwave equation defined in a bounded domain
    • O.P. Agrawal Solution for a fractional diffusionwave equation defined in a bounded domain Nonlinear Dynam. 29 2002 145 155
    • (2002) Nonlinear Dynam. , vol.29 , pp. 145-155
    • Agrawal, O.P.1
  • 34
    • 77949264033 scopus 로고    scopus 로고
    • Cauchy-type problem for diffusionwave equation with the RiemannLiouville partial derivative
    • A.A. Kilbas, J.J. Trujillo, and A.A. Voroshilov Cauchy-type problem for diffusionwave equation with the RiemannLiouville partial derivative Fract. Calc. Appl. Anal. 8 2005 403 430
    • (2005) Fract. Calc. Appl. Anal. , vol.8 , pp. 403-430
    • Kilbas, A.A.1    Trujillo, J.J.2    Voroshilov, A.A.3
  • 35
    • 27744467724 scopus 로고    scopus 로고
    • Fractional diffusion equation and Green function approach: Exact solutions
    • E.K. Lenzi, R.S. Mendes, G. Gonalves, M.K. Lenzi, and L.R. da Silva Fractional diffusion equation and Green function approach: exact solutions Physica A 360 2006 215 226
    • (2006) Physica A , vol.360 , pp. 215-226
    • Lenzi, E.K.1    Mendes, R.S.2    Gonalves, G.3    Lenzi, M.K.4    Da Silva, L.R.5
  • 36
    • 33846862055 scopus 로고    scopus 로고
    • Two-dimensional axisymmentric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation
    • Y.Z. Povstenko Two-dimensional axisymmentric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation Internat. J. Solids Structures 44 2007 2324 2348
    • (2007) Internat. J. Solids Structures , vol.44 , pp. 2324-2348
    • Povstenko, Y.Z.1
  • 37
    • 58149326720 scopus 로고    scopus 로고
    • Some results for a fractional diffusion equation with radial symmetry in a confined region
    • E.K. Lenzi, L.R. da Silva, A.T. Silva, L.R. Evangelista, and M.K. Lenci Some results for a fractional diffusion equation with radial symmetry in a confined region Physica A 388 2009 806 810
    • (2009) Physica A , vol.388 , pp. 806-810
    • Lenzi, E.K.1    Da Silva, L.R.2    Silva, A.T.3    Evangelista, L.R.4    Lenci, M.K.5
  • 40
    • 0001536558 scopus 로고    scopus 로고
    • Anomalous transport in external fields: Continuous time random walks and fractional diffusion equation extended
    • R. Metzler, J. Klafter, and I.M. Sokolov Anomalous transport in external fields: continuous time random walks and fractional diffusion equation extended Phys. Rev. E 58 1998 1621 1633
    • (1998) Phys. Rev. E , vol.58 , pp. 1621-1633
    • Metzler, R.1    Klafter, J.2    Sokolov, I.M.3
  • 41
    • 0034257243 scopus 로고    scopus 로고
    • Accelerating Brownian motion: A fractional dynamics approach to fast diffusion
    • R. Metzler, and J. Klafter Accelerating Brownian motion: a fractional dynamics approach to fast diffusion Europhys. Lett. 51 2000 492 498
    • (2000) Europhys. Lett. , vol.51 , pp. 492-498
    • Metzler, R.1    Klafter, J.2
  • 42
    • 33750026674 scopus 로고
    • Scale-invariant motion in intermittent chaotic systems
    • G. Zumofen, and J. Klafter Scale-invariant motion in intermittent chaotic systems Phys. Rev. E 47 1993 851 863
    • (1993) Phys. Rev. E , vol.47 , pp. 851-863
    • Zumofen, G.1    Klafter, J.2
  • 43
    • 0345633630 scopus 로고    scopus 로고
    • Stochastic foundation of normal and anomalous Cattaneo-type transport
    • R. Metzler, and A. Compte Stochastic foundation of normal and anomalous Cattaneo-type transport Physica A 268 1999 454 468
    • (1999) Physica A , vol.268 , pp. 454-468
    • Metzler, R.1    Compte, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.