-
2
-
-
0028039735
-
On the wave theory in heat conduction
-
M.N. ziik, and D.Y. Tzou On the wave theory in heat conduction J. Heat Transfer 116 1994 526 535
-
(1994)
J. Heat Transfer
, vol.116
, pp. 526-535
-
-
Ziik, M.N.1
Tzou, D.Y.2
-
4
-
-
0032163001
-
Mesoscopic diffusion as a non-Markov process
-
S. Godoy, and L.S. Garca-Coln Mesoscopic diffusion as a non-Markov process Physica A 258 1998 414 428
-
(1998)
Physica A
, vol.258
, pp. 414-428
-
-
Godoy, S.1
Garca-Coln, L.S.2
-
5
-
-
0002641421
-
The random walk's guide to anomalous diffusion: A fractional dynamics approach
-
R. Metzler, and J. Klafter The random walk's guide to anomalous diffusion: a fractional dynamics approach Phys. Rep. 339 2000 1 77
-
(2000)
Phys. Rep.
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
6
-
-
0036887936
-
Chaos, fractional kinetics, and anomalous transport
-
G.M. Zaslavsky Chaos, fractional kinetics, and anomalous transport Phys. Rep. 371 2002 461 580
-
(2002)
Phys. Rep.
, vol.371
, pp. 461-580
-
-
Zaslavsky, G.M.1
-
7
-
-
4043151477
-
The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics
-
R. Metzler, and J. Klafter The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics J. Phys. A: Math. Gen. 37 2004 R161 R208
-
(2004)
J. Phys. A: Math. Gen.
, vol.37
-
-
Metzler, R.1
Klafter, J.2
-
8
-
-
34250511985
-
A general theory of heat conduction with finite wave speeds
-
M.E. Gurtin, and A.C. Pipkin A general theory of heat conduction with finite wave speeds Arch. Ration. Mech. Anal. 31 1968 113 126
-
(1968)
Arch. Ration. Mech. Anal.
, vol.31
, pp. 113-126
-
-
Gurtin, M.E.1
Pipkin, A.C.2
-
9
-
-
0021448875
-
To the theoretical explanation of the "universal response"
-
R.R. Nigmatullin To the theoretical explanation of the "universal response" Phys. Status Solidi (b) 123 1984 739 745
-
(1984)
Phys. Status Solidi (B)
, vol.123
, pp. 739-745
-
-
Nigmatullin, R.R.1
-
10
-
-
0021468522
-
On the theory of relaxation with "remnant" memory
-
R.R. Nigmatullin On the theory of relaxation with "remnant" memory Phys. Status Solidi (b) 124 1984 389 393
-
(1984)
Phys. Status Solidi (B)
, vol.124
, pp. 389-393
-
-
Nigmatullin, R.R.1
-
11
-
-
0027607737
-
Thermoelasticity without energy dissipation
-
A.E. Green, and P.M. Naghdi Thermoelasticity without energy dissipation J. Elasticity 31 1993 189 208
-
(1993)
J. Elasticity
, vol.31
, pp. 189-208
-
-
Green, A.E.1
Naghdi, P.M.2
-
13
-
-
84973509052
-
Thermoelasticity with second sound: A review
-
D.S. Chandrasekharaiah Thermoelasticity with second sound: a review Appl. Mech. Rev. 39 1986 355 376
-
(1986)
Appl. Mech. Rev.
, vol.39
, pp. 355-376
-
-
Chandrasekharaiah, D.S.1
-
14
-
-
13844253772
-
Fractional heat conduction equation and associated thermal stress
-
Y.Z. Povstenko Fractional heat conduction equation and associated thermal stress J. Thermal Stresses 28 2005 83 102
-
(2005)
J. Thermal Stresses
, vol.28
, pp. 83-102
-
-
Povstenko, Y.Z.1
-
15
-
-
77952823001
-
Theory of thermoelasticity based on the spacetime-fractional heat conduction equation
-
Y.Z. Povstenko Theory of thermoelasticity based on the spacetime-fractional heat conduction equation Phys. Scr. T 136 2009 014017 (6 p.)
-
(2009)
Phys. Scr. T
, vol.136
-
-
Povstenko, Y.Z.1
-
17
-
-
0001983732
-
Fractional calculus: Some basic problems in continuum and statistical mechanics
-
F. Mainardi Fractional calculus: some basic problems in continuum and statistical mechanics A. Carpinteri, F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics 1997 Springer Wien 291 348
-
(1997)
Fractals and Fractional Calculus in Continuum Mechanics
, pp. 291-348
-
-
Mainardi, F.1
-
20
-
-
33646097441
-
Pattern formation in a fractional reactiondiffusion system
-
V.V. Gafiychuk, and B.Yo. Datsko Pattern formation in a fractional reactiondiffusion system Physica A 365 2006 300 306
-
(2006)
Physica A
, vol.365
, pp. 300-306
-
-
Gafiychuk, V.V.1
Datsko, B.Yo.2
-
22
-
-
0009481303
-
The fractional diffusion equation
-
W. Wyss The fractional diffusion equation J. Math. Phys. 27 1986 2782 2785
-
(1986)
J. Math. Phys.
, vol.27
, pp. 2782-2785
-
-
Wyss, W.1
-
23
-
-
0001553919
-
Fractional diffusion and wave equations
-
W.R. Schneider, and W. Wyss Fractional diffusion and wave equations J. Math. Phys. 30 1989 134 144
-
(1989)
J. Math. Phys.
, vol.30
, pp. 134-144
-
-
Schneider, W.R.1
Wyss, W.2
-
24
-
-
30244460855
-
The fundamental solutions for the fractional diffusionwave equation
-
F. Mainardi The fundamental solutions for the fractional diffusionwave equation Appl. Math. Lett. 9 6 1996 23 28
-
(1996)
Appl. Math. Lett.
, vol.9
, Issue.6
, pp. 23-28
-
-
Mainardi, F.1
-
25
-
-
0030464353
-
Fractional relaxationoscillation and fractional diffusionwave phenomena
-
F. Mainardi Fractional relaxationoscillation and fractional diffusionwave phenomena Chaos Solitons Fractals 7 1996 1461 1477
-
(1996)
Chaos Solitons Fractals
, vol.7
, pp. 1461-1477
-
-
Mainardi, F.1
-
26
-
-
57249098754
-
Multidimensional solutions of time-fractional diffusionwave equations
-
A. Hanyga Multidimensional solutions of time-fractional diffusionwave equations Proc. R. Soc. Lond. Ser. A 458 2002 933 957
-
(2002)
Proc. R. Soc. Lond. Ser. A
, vol.458
, pp. 933-957
-
-
Hanyga, A.1
-
27
-
-
74449084990
-
The variational iteration method which should be followed
-
J.-H. He, G.-C. Wu, and F. Austin The variational iteration method which should be followed Nonlinear Sci. Lett. A 1 2010 1 30
-
(2010)
Nonlinear Sci. Lett. A
, vol.1
, pp. 1-30
-
-
He, J.-H.1
Wu, G.-C.2
Austin, F.3
-
28
-
-
77953205877
-
The homotopy perturbation method for multi-order time fractional differential equations
-
A. Golbabai, and K. Sayevand The homotopy perturbation method for multi-order time fractional differential equations Nonlinear Sci. Lett. A 1 2010 147 154
-
(2010)
Nonlinear Sci. Lett. A
, vol.1
, pp. 147-154
-
-
Golbabai, A.1
Sayevand, K.2
-
29
-
-
77955393855
-
The reduced differential transform method: A new approach to fractional partial differential equations
-
Y. Keskin, and G. Oturanc The reduced differential transform method: a new approach to fractional partial differential equations Nonlinear Sci. Lett. A 1 2010 207 217
-
(2010)
Nonlinear Sci. Lett. A
, vol.1
, pp. 207-217
-
-
Keskin, Y.1
Oturanc, G.2
-
30
-
-
0033884660
-
Boundary value problems for fractional diffusion equations
-
R. Metzler, and J. Klafter Boundary value problems for fractional diffusion equations Physica A 278 2000 107 125
-
(2000)
Physica A
, vol.278
, pp. 107-125
-
-
Metzler, R.1
Klafter, J.2
-
31
-
-
0033750757
-
Fractional diffusion based on RiemannLiouville fractional derivatives
-
R. Hilfer Fractional diffusion based on RiemannLiouville fractional derivatives J. Phys. Chem. B 104 2000 3914 3917
-
(2000)
J. Phys. Chem. B
, vol.104
, pp. 3914-3917
-
-
Hilfer, R.1
-
33
-
-
0036650559
-
Solution for a fractional diffusionwave equation defined in a bounded domain
-
O.P. Agrawal Solution for a fractional diffusionwave equation defined in a bounded domain Nonlinear Dynam. 29 2002 145 155
-
(2002)
Nonlinear Dynam.
, vol.29
, pp. 145-155
-
-
Agrawal, O.P.1
-
34
-
-
77949264033
-
Cauchy-type problem for diffusionwave equation with the RiemannLiouville partial derivative
-
A.A. Kilbas, J.J. Trujillo, and A.A. Voroshilov Cauchy-type problem for diffusionwave equation with the RiemannLiouville partial derivative Fract. Calc. Appl. Anal. 8 2005 403 430
-
(2005)
Fract. Calc. Appl. Anal.
, vol.8
, pp. 403-430
-
-
Kilbas, A.A.1
Trujillo, J.J.2
Voroshilov, A.A.3
-
35
-
-
27744467724
-
Fractional diffusion equation and Green function approach: Exact solutions
-
E.K. Lenzi, R.S. Mendes, G. Gonalves, M.K. Lenzi, and L.R. da Silva Fractional diffusion equation and Green function approach: exact solutions Physica A 360 2006 215 226
-
(2006)
Physica A
, vol.360
, pp. 215-226
-
-
Lenzi, E.K.1
Mendes, R.S.2
Gonalves, G.3
Lenzi, M.K.4
Da Silva, L.R.5
-
36
-
-
33846862055
-
Two-dimensional axisymmentric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation
-
Y.Z. Povstenko Two-dimensional axisymmentric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation Internat. J. Solids Structures 44 2007 2324 2348
-
(2007)
Internat. J. Solids Structures
, vol.44
, pp. 2324-2348
-
-
Povstenko, Y.Z.1
-
37
-
-
58149326720
-
Some results for a fractional diffusion equation with radial symmetry in a confined region
-
E.K. Lenzi, L.R. da Silva, A.T. Silva, L.R. Evangelista, and M.K. Lenci Some results for a fractional diffusion equation with radial symmetry in a confined region Physica A 388 2009 806 810
-
(2009)
Physica A
, vol.388
, pp. 806-810
-
-
Lenzi, E.K.1
Da Silva, L.R.2
Silva, A.T.3
Evangelista, L.R.4
Lenci, M.K.5
-
40
-
-
0001536558
-
Anomalous transport in external fields: Continuous time random walks and fractional diffusion equation extended
-
R. Metzler, J. Klafter, and I.M. Sokolov Anomalous transport in external fields: continuous time random walks and fractional diffusion equation extended Phys. Rev. E 58 1998 1621 1633
-
(1998)
Phys. Rev. E
, vol.58
, pp. 1621-1633
-
-
Metzler, R.1
Klafter, J.2
Sokolov, I.M.3
-
41
-
-
0034257243
-
Accelerating Brownian motion: A fractional dynamics approach to fast diffusion
-
R. Metzler, and J. Klafter Accelerating Brownian motion: a fractional dynamics approach to fast diffusion Europhys. Lett. 51 2000 492 498
-
(2000)
Europhys. Lett.
, vol.51
, pp. 492-498
-
-
Metzler, R.1
Klafter, J.2
-
42
-
-
33750026674
-
Scale-invariant motion in intermittent chaotic systems
-
G. Zumofen, and J. Klafter Scale-invariant motion in intermittent chaotic systems Phys. Rev. E 47 1993 851 863
-
(1993)
Phys. Rev. E
, vol.47
, pp. 851-863
-
-
Zumofen, G.1
Klafter, J.2
-
43
-
-
0345633630
-
Stochastic foundation of normal and anomalous Cattaneo-type transport
-
R. Metzler, and A. Compte Stochastic foundation of normal and anomalous Cattaneo-type transport Physica A 268 1999 454 468
-
(1999)
Physica A
, vol.268
, pp. 454-468
-
-
Metzler, R.1
Compte, A.2
|