-
1
-
-
78651286606
-
Classifying sentiment in microblogs: Is brevity an advantage?
-
Bermingham, A., and Smeaton, A. Classifying sentiment in microblogs: Is brevity an advantage? CIKM (2010).
-
(2010)
CIKM
-
-
Bermingham, A.1
Smeaton, A.2
-
2
-
-
78650162978
-
Sentiment knowledge discovery in twitter streaming data
-
Bifet, A., and Frank, E. Sentiment knowledge discovery in twitter streaming data. Lecture Notes in Computer Science 6332 (2010).
-
(2010)
Lecture Notes in Computer Science
, vol.6332
-
-
Bifet, A.1
Frank, E.2
-
3
-
-
78951477510
-
Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena
-
Bollen, J., Pepe, A., and Mao, H. Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. WWW (2010).
-
(2010)
WWW
-
-
Bollen, J.1
Pepe, A.2
Mao, H.3
-
4
-
-
77954168866
-
Characterizing debate performance via aggregated twitter sentiment
-
Diakopoulos, N. A., and Shamma, D. A. Characterizing debate performance via aggregated twitter sentiment. CHI (2010).
-
(2010)
CHI
-
-
Diakopoulos, N.A.1
Shamma, D.A.2
-
5
-
-
85054420653
-
Divided they tweet: The network structure of political microbloggers and discussion topics
-
Feller, A., Kuhnert, M., Sprenger, T. O., and Welpe, I. M. Divided they tweet: The network structure of political microbloggers and discussion topics. ICWSM (2011).
-
(2011)
ICWSM
-
-
Feller, A.1
Kuhnert, M.2
Sprenger, T.O.3
Welpe, I.M.4
-
6
-
-
84890745998
-
Blews: Using blogs to provide context for news articles
-
Gamon, M., Basu, S., Belenko, D., Fisher, D., Hurst, M., and Konig, A. C. Blews: Using blogs to provide context for news articles. ICWSM (2008).
-
(2008)
ICWSM
-
-
Gamon, M.1
Basu, S.2
Belenko, D.3
Fisher, D.4
Hurst, M.5
Konig, A.C.6
-
8
-
-
85020968629
-
More voices than ever? Quantifying media bias in networks
-
Lin, Y.-R., Bagrow, J. P., and Lazer, D. More voices than ever? quantifying media bias in networks. ICWSM (2011).
-
(2011)
ICWSM
-
-
Lin, Y.-R.1
Bagrow, J.P.2
Lazer, D.3
-
9
-
-
85006712027
-
The party is over here: Structure and content in the 2010 election
-
Livne, A., Simmons, M., Adar, E., and Adamic, L. The party is over here: Structure and content in the 2010 election. ICWSM (2011).
-
(2011)
ICWSM
-
-
Livne, A.1
Simmons, M.2
Adar, E.3
Adamic, L.4
-
10
-
-
84890614558
-
From tweets to polls: Linking text sentiment to public opinion time series
-
O'Connor, B., Balasubramanyan, R., Routledge, B. R., and Smith, N. A. From tweets to polls: Linking text sentiment to public opinion time series. International AAAI Conference on Weblogs and Social Media (ICWSM) (2010).
-
(2010)
International AAAI Conference on Weblogs and Social Media (ICWSM)
-
-
O'Connor, B.1
Balasubramanyan, R.2
Routledge, B.R.3
Smith, N.A.4
-
12
-
-
85100558628
-
Detecting and tracking political abuse in social media
-
Ratkiewicz, J., Conover, M. D., Meiss, M., Goncalves, B., Flammini, A., and Menczer, F. M. Detecting and tracking political abuse in social media. ICWSM (2011).
-
(2011)
ICWSM
-
-
Ratkiewicz, J.1
Conover, M.D.2
Meiss, M.3
Goncalves, B.4
Flammini, A.5
Menczer, F.M.6
-
13
-
-
84893388959
-
Qa with attitude: Exploring opinion type analysis for improving question answering in on-line discussions and the news
-
Somasundaran, S., Wilson, T., Wiebe, J., and Stoyanov, V. Qa with attitude: Exploring opinion type analysis for improving question answering in on-line discussions and the news. ICWSM (2007).
-
(2007)
ICWSM
-
-
Somasundaran, S.1
Wilson, T.2
Wiebe, J.3
Stoyanov, V.4
-
14
-
-
84890668120
-
Predicting elections with twitter: What 140 characters reveal about political sentiment
-
Tumasjan, A., Sprenger, T. O., Sandner, P. G., and Welpe, I. M. Predicting elections with twitter: What 140 characters reveal about political sentiment. AAAI (2010).
-
(2010)
AAAI
-
-
Tumasjan, A.1
Sprenger, T.O.2
Sandner, P.G.3
Welpe, I.M.4
|